A molecular dynamics study of grain boundary behavior at elevated temperatures using an embedded atom potential

1988 ◽  
Vol 22 (12) ◽  
pp. 1923-1928 ◽  
Author(s):  
J.F. Lutsko ◽  
D. Wolf
1988 ◽  
Vol 141 ◽  
Author(s):  
J. F. Lutsko ◽  
D. Wolf ◽  
S. R. Phillpot

AbstractThe behavior of a metallic grain boundary at high temperatures is studied using an embedded atom potential. A recently developed molecular dynamics code is used which allows the simulation of an isolated grain boundary at temperatures as high as the bulk melting point. The stability of the boundary below the melting point is studied and compared with earlier investigations which have suggested the existence of a “premelting“ transition. It is found that the boundary migrates at high temperature but remains well defined up to the bulk melting point. In contrast to simulations of ideal crystals, it was not possible to superheat the grain boundary due to the nucleation of bulk melting at the boundary.


2005 ◽  
Vol 502 ◽  
pp. 157-162 ◽  
Author(s):  
A. Suzuki ◽  
Yuri M. Mishin

We present results of atomistic computer simulations of spontaneous and stress-induced grain boundary (GB) migration in copper. Several symmetrical tilt GBs have been studied using the embedded-atom method and molecular dynamics. The GBs are observed to spontaneously migrate in a random manner. This spontaneous GB motion is always accompanied by relative translations of the grains parallel to the GB plane. Furthermore, external shear stresses applied parallel to the GB and normal to the tilt axis induce GB migration. Strong coupling is observed between the normal GB velocity vn and the grain translation rate v||. The mechanism of GB motion is established to be local lattice rotation within the GB core that does not involve any GB diffusion or sliding. The coupling constant between vn and v|| predicted within a simple geometric model accurately matches the molecular dynamics observations.


2011 ◽  
Vol 172-174 ◽  
pp. 670-675 ◽  
Author(s):  
Ivailo S. Atanasov ◽  
Marc Hou

We address the question of the evolution of a nanostructured system in a metastable state to equilibrium. To this purpose, we use the case study of the transition of an AucorePdshell nanoalloy cluster containing up to about 600 atoms toward the equilibrium Au segregated configuration. We start from a molecular dynamics approach with an embedded atom potential. The way the transition develops at low temperatures is found to be very sensitive to the cluster morphology and the way energy is exchanged with the environment. The transition of icosahedral inverse core-shell Au-Pd clusters is predicted to nucleate locally at the surface contrary to clusters with other morphologies, and starting at lower temperatures compared to them.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5351
Author(s):  
Ahmed Tamer AlMotasem ◽  
Matthias Posselt ◽  
Tomas Polcar

In the present work, modified embedded atom potential and large-scale molecular dynamics’ simulations were used to explore the effect of grain boundary (GB) segregated foreign interstitials on the deformation behavior of nanocrystalline (nc) iron. As a case study, carbon and nitrogen (about 2.5 at.%) were added to (nc) iron. The tensile test results showed that, at the onset of plasticity, grain boundary sliding mediated was dominated, whereas both dislocations and twinning were prevailing deformation mechanisms at high strain. Adding C/N into GBs reduces the free excess volume and consequently increases resistance to GB sliding. In agreement with experiments, the flow stress increased due to the presence of carbon or nitrogen and carbon had the stronger impact. Additionally, the simulation results revealed that GB reduction and suppressing GBs’ dislocation were the primary cause for GB strengthening. Moreover, we also found that the stress required for both intragranular dislocation and twinning nucleation were strongly dependent on the solute type.


2016 ◽  
Vol 683 ◽  
pp. 626-631 ◽  
Author(s):  
Ivan Konovalenko ◽  
Igor S. Konovalenko ◽  
Andrey Dmitriev ◽  
Serguey Psakhie ◽  
Evgeny A. Kolubaev

Mass transfer has been studied at atomic scale by molecular dynamics simulation of friction stir welding and vibration-assisted friction stir welding using the modified embedded atom potential. It was shown that increasing the velocity movement and decreasing the angle velocity of the tool reduce the penetration depth of atoms into the opposite crystallite in the connected pair of metals. It was shown also that increasing the amplitude of vibrations applied to the friction stir welding tool results in increasing the interpenetration of atoms belonging to the crystallites joined


1995 ◽  
Vol 10 (7) ◽  
pp. 1589-1592 ◽  
Author(s):  
Chun-Li Liu ◽  
S.J. Plimpton

Molecular dynamics (MD) simulations of diffusion in a Σ5(310) [001] Al tilt grain boundary were performed using for the first time three different potentials based on the embedded atom method (EAM). The EAM potentials that produce more accurate melting temperatures also yield activation energies in better agreement with experimental data. Compared to pair potentials, the EAM potentials also give more accurate results.


2007 ◽  
Vol 558-559 ◽  
pp. 1081-1086 ◽  
Author(s):  
Rasmus B. Godiksen ◽  
Zachary T. Trautt ◽  
Moneesh Upmanyu ◽  
Søren Schmidt ◽  
Dorte Juul Jensen

Recrystallization is governed by the migration of high angle grain boundaries traveling through a deformed material driven by the excess energy located primarily in dislocation structures. A method for investigating the interaction between a migrating grain boundary and dislocation boundaries using molecular dynamics (MD) was recently developed. During simulations migrating high angle grain boundaries interact with dislocation boundaries, and individual dislocations from the dislocation boundaries are absorbed into the grain boundaries. Results obtained previously, using a simple Lennard-Jones (LJ) potential, showed surprisingly irregular grain boundary migration compared to simulations of grain boundary migration applying other types of driving forces. Inhomogeneous boundary-dislocation interactions were also observed in which the grain boundaries locally acquired significant cusps during dislocation absorption events. The study presented here makes comparisons between simulations performed using a LJ- and an embedded atom method (EAM) aluminum potential. The results show similarities which indicate that it is the crystallographic features rather than the atomic interactions that determine the details of the migration process.


Sign in / Sign up

Export Citation Format

Share Document