Luminous flux and luminous efficacy of black-body radiation: an analytical approximation

Solar Energy ◽  
2002 ◽  
Vol 73 (5) ◽  
pp. 319-326 ◽  
Author(s):  
V. Lampret ◽  
J. Peternelj ◽  
A. Krainer
2019 ◽  
Vol 141 (5) ◽  
Author(s):  
John H. Lienhard V

The radiation fractional function is the fraction of black body radiation below a given value of λT. Edwards and others have distinguished between the traditional, or “external,” radiation fractional function and an “internal” radiation fractional function. The latter is used for linearization of net radiation from a nongray surface when the temperature of an effectively black environment is not far from the surface's temperature, without calculating a separate total absorptivity. This paper examines the analytical approximation involved in the internal fractional function, with results given in terms of the incomplete zeta function. A rigorous upper bound on the difference between the external and internal emissivity is obtained. Calculations using the internal emissivity are compared to exact calculations for several models and materials. A new approach to calculating the internal emissivity is developed, yielding vastly improved accuracy over a wide range of temperature differences. The internal fractional function should be used for evaluating radiation thermal resistances, in particular.


Author(s):  
John H. Lienhard

The radiation fractional function is the fraction of black body radiation below a given value of λT. Edwards and others have distinguished between the traditional, or “external”, radiation fractional function and an “internal” radiation fractional function. The latter is used for simplified calculation of net radiation from a non-gray surface when the temperature of an effectively black source is not far from the surface’s temperature, without calculating a separate total absorptivity. This paper examines the analytical approximation involved in the internal fractional function, with results given in terms of the incomplete zeta function. A rigorous upper bound on the difference between the external and internal emissivity is obtained. Calculations using the internal emissivity are compared to exact calculations for several models and materials. A new approach to calculating the internal emissivity is developed, yielding vastly improved accuracy over a wide range of temperature differences. The internal fractional function can be useful for certain simplified calculations.


2020 ◽  
pp. 57-62
Author(s):  
Olga Yu. Kovalenko ◽  
Yulia A. Zhuravlyova

This work contains analysis of characteristics of automobile lamps by Philips, KOITO, ETI flip chip LEDs, Osram, General Electric (GE), Gtinthebox, OSLAMPledbulbs with H1, H4, H7, H11 caps: luminous flux, luminous efficacy, correlated colour temperature. Characteristics of the studied samples are analysed before the operation of the lamps. The analysis of the calculation results allows us to make a conclusion that the values of correlated colour temperature of halogen lamps are close to the parameters declared by manufacturers. The analysis of the study results has shown that, based on actual values of correlated colour temperature, it is not advisable to use LED lamps in unfavourable weather conditions (such as rain, fog, snow). The results of the study demonstrate that there is a slight dispersion of actual values of luminous flux of halogen lamps by different manufacturers. Maximum variation between values of luminous flux of different lamps does not exceed 14 %. The analysis of the measurement results has shown that actual values of luminous flux of all halogen lamps comply with the mandatory rules specified in the UN/ECE Regulation No. 37 and luminous flux of LED lamps exceeds maximum allowable value by more than 8 %. Luminous efficacy of LED lamps is higher than that of halogen lamps: more than 82 lm/W and lower power consumption. The results of the measurements have shown that power consumption of a LED automobile lamp is lower than that of similar halogen lamps by 3 times and their luminous efficacy is higher by 5 times.


Author(s):  
Nicholas Manton ◽  
Nicholas Mee

The book is an inspirational survey of fundamental physics, emphasizing the use of variational principles. Chapter 1 presents introductory ideas, including the principle of least action, vectors and partial differentiation. Chapter 2 covers Newtonian dynamics and the motion of mutually gravitating bodies. Chapter 3 is about electromagnetic fields as described by Maxwell’s equations. Chapter 4 is about special relativity, which unifies space and time into 4-dimensional spacetime. Chapter 5 introduces the mathematics of curved space, leading to Chapter 6 covering general relativity and its remarkable consequences, such as the existence of black holes. Chapters 7 and 8 present quantum mechanics, essential for understanding atomic-scale phenomena. Chapter 9 uses quantum mechanics to explain the fundamental principles of chemistry and solid state physics. Chapter 10 is about thermodynamics, which is built around the concepts of temperature and entropy. Various applications are discussed, including the analysis of black body radiation that led to the quantum revolution. Chapter 11 surveys the atomic nucleus, its properties and applications. Chapter 12 explores particle physics, the Standard Model and the Higgs mechanism, with a short introduction to quantum field theory. Chapter 13 is about the structure and evolution of stars and brings together material from many of the earlier chapters. Chapter 14 on cosmology describes the structure and evolution of the universe as a whole. Finally, Chapter 15 discusses remaining problems at the frontiers of physics, such as the interpretation of quantum mechanics, and the ultimate nature of particles. Some speculative ideas are explored, such as supersymmetry, solitons and string theory.


Author(s):  
Anthony Duncan ◽  
Michel Janssen

This is the first of two volumes on the genesis of quantum mechanics. It covers the key developments in the period 1900–1923 that provided the scaffold on which the arch of modern quantum mechanics was built in the period 1923–1927 (covered in the second volume). After tracing the early contributions by Planck, Einstein, and Bohr to the theories of black‐body radiation, specific heats, and spectroscopy, all showing the need for drastic changes to the physics of their day, the book tackles the efforts by Sommerfeld and others to provide a new theory, now known as the old quantum theory. After some striking initial successes (explaining the fine structure of hydrogen, X‐ray spectra, and the Stark effect), the old quantum theory ran into serious difficulties (failing to provide consistent models for helium and the Zeeman effect) and eventually gave way to matrix and wave mechanics. Constructing Quantum Mechanics is based on the best and latest scholarship in the field, to which the authors have made significant contributions themselves. It breaks new ground, especially in its treatment of the work of Sommerfeld and his associates, but also offers new perspectives on classic papers by Planck, Einstein, and Bohr. Throughout the book, the authors provide detailed reconstructions (at the level of an upper‐level undergraduate physics course) of the cental arguments and derivations of the physicists involved. All in all, Constructing Quantum Mechanics promises to take the place of older books as the standard source on the genesis of quantum mechanics.


1988 ◽  
Vol 40 (3) ◽  
pp. 407-417 ◽  
Author(s):  
Cheng Chu ◽  
J. L. Sperling

Electromagnetic fluctuations, induced by energetic charged particles, are calculated using correlation techniques for a uniform magnetized plasma. Power emission in the ion-cyclotron range of frequencies (ICRF) is calculated for a specific model of velocity distribution function. The emissive spectra are distinct from that of the black-body radiation and have features that are consistent with experimental observation.


1999 ◽  
Vol 13 (02) ◽  
pp. 161-189
Author(s):  
C. SYROS

The essentials of quantum mechanics are derived from Liouville's theorem in statistical mechanics. An elementary solution, g, of Liouville's equation helps to construct a differentiable N-particle distribution function (DF), F(g), satisfying the same equation. Reality and additivity of F(g): (i) quantize the time variable; (ii) quantize the energy variable; (iii) quantize the Maxwell–Boltzmann distribution; (iv) make F(g) observable through time-elimination; (v) produce the Planck constant; (vi) yield the black-body radiation spectrum; (vii) support chronotopology introduced axiomatically; (viii) the Schrödinger and the Klein–Gordon equations follow. Hence, quantum theory appears as a corollary of Liouville's theorem. An unknown connection is found allowing the better understanding of space-times and of these theories.


1964 ◽  
Vol 86 (2) ◽  
pp. 193-199 ◽  
Author(s):  
R. C. Birkebak ◽  
E. M. Sparrow ◽  
E. R. G. Eckert ◽  
J. W. Ramsey

Measurements have been made of the hemispherical and specular reflectance of metallic surfaces of controlled roughness. The surfaces, which were ground nickel rectangles, were irradiated at various angles of incidence by a beam of black-body radiation, the temperature of which was also varied. The instrumentation which was devised to perform the experiments is described. The measurements show that beyond a certain surface roughness, the hemispherical reflectance is virtually independent of further increases in roughness. On the other hand, the specular reflectance decreases steadily with increasing roughness. Additionally, the hemispherical reflectance is found to be quite insensitive to the angle of incidence, while the specular reflectance increases with angle of incidence for the rougher surfaces.


Sign in / Sign up

Export Citation Format

Share Document