Participation of Na+ channels in the potentiation by Tityus serrulatus α-toxin TsTx-V of glucose-induced electrical activity and insulin secretion in rodent islet β-cells

Toxicon ◽  
2003 ◽  
Vol 41 (8) ◽  
pp. 1039-1045 ◽  
Author(s):  
Antonio A Gonçalves ◽  
Marcos H Toyama ◽  
Everardo M Carneiro ◽  
Sergio Marangoni ◽  
Eliana C Arantes ◽  
...  
Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 685 ◽  
Author(s):  
Md. Shahidul Islam

Insulin secretion from the β-cells of the islets of Langerhans is triggered mainly by nutrients such as glucose, and incretin hormones such as glucagon-like peptide-1 (GLP-1). The mechanisms of the stimulus-secretion coupling involve the participation of the key enzymes that metabolize the nutrients, and numerous ion channels that mediate the electrical activity. Several members of the transient receptor potential (TRP) channels participate in the processes that mediate the electrical activities and Ca2+ oscillations in these cells. Human β-cells express TRPC1, TRPM2, TRPM3, TRPM4, TRPM7, TRPP1, TRPML1, and TRPML3 channels. Some of these channels have been reported to mediate background depolarizing currents, store-operated Ca2+ entry (SOCE), electrical activity, Ca2+ oscillations, gene transcription, cell-death, and insulin secretion in response to stimulation by glucose and GLP1. Different channels of the TRP family are regulated by one or more of the following mechanisms: activation of G protein-coupled receptors, the filling state of the endoplasmic reticulum Ca2+ store, heat, oxidative stress, or some second messengers. This review briefly compiles our current knowledge about the molecular mechanisms of regulations, and functions of the TRP channels in the β-cells, the α-cells, and some insulinoma cell lines.


Endocrinology ◽  
2006 ◽  
Vol 147 (10) ◽  
pp. 4655-4663 ◽  
Author(s):  
Jocelyn E. Manning Fox ◽  
Armen V. Gyulkhandanyan ◽  
Leslie S. Satin ◽  
Michael B. Wheeler

In contrast to mouse, rat islet β-cell membrane potential is reported not to oscillate in response to elevated glucose despite demonstrated oscillations in calcium and insulin secretion. We aim to clarify the electrical activity of rat islet β-cells and characterize and compare the electrical activity of both α- and β-cells in rat and mouse islets. We recorded electrical activity from α- and β-cells within intact islets from both mouse and rat using the perforated whole-cell patch clamp technique. Fifty-six percent of both mouse and rat β-cells exhibited an oscillatory response to 11.1 mm glucose. Responses to both 11.1 mm and 2.8 mm glucose were identical in the two species. Rat β-cells exhibited incremental depolarization in a glucose concentration-dependent manner. We also demonstrated electrical activity in human islets recorded under the same conditions. In both mouse and rat α-cells 11 mm glucose caused hyperpolarization of the membrane potential, whereas 2.8 mm glucose produced action potential firing. No species differences were observed in the response of α-cells to glucose. This paper is the first to demonstrate and characterize oscillatory membrane potential fluctuations in the presence of elevated glucose in rat islet β-cells in comparison with mouse. The findings promote the use of rat islets in future electrophysiological studies, enabling consistency between electrophysiological and insulin secretion studies. An inverse response of α-cell membrane potential to glucose furthers our understanding of the mechanisms underlying glucose sensitive glucagon secretion.


2019 ◽  
Vol 47 (6) ◽  
pp. 1843-1855 ◽  
Author(s):  
Mauricio Di Fulvio ◽  
Lydia Aguilar-Bryan

It is accepted that insulin-secreting β-cells release insulin in response to glucose even in the absence of functional ATP-sensitive K+ (KATP)-channels, which play a central role in a ‘consensus model’ of secretion broadly accepted and widely reproduced in textbooks. A major shortcoming of this consensus model is that it ignores any and all anionic mechanisms, known for more than 40 years, to modulate β-cell electrical activity and therefore insulin secretion. It is now clear that, in addition to metabolically regulated KATP-channels, β-cells are equipped with volume-regulated anion (Cl–) channels (VRAC) responsive to glucose concentrations in the range known to promote electrical activity and insulin secretion. In this context, the electrogenic efflux of Cl– through VRAC and other Cl– channels known to be expressed in β-cells results in depolarization because of an outwardly directed Cl– gradient established, maintained and regulated by the balance between Cl– transporters and channels. This review will provide a succinct historical perspective on the development of a complex hypothesis: Cl– transporters and channels modulate insulin secretion in response to nutrients.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Brenda Strutt ◽  
Sandra Szlapinski ◽  
Thineesha Gnaneswaran ◽  
Sarah Donegan ◽  
Jessica Hill ◽  
...  

AbstractThe apelin receptor (Aplnr) and its ligands, Apelin and Apela, contribute to metabolic control. The insulin resistance associated with pregnancy is accommodated by an expansion of pancreatic β-cell mass (BCM) and increased insulin secretion, involving the proliferation of insulin-expressing, glucose transporter 2-low (Ins+Glut2LO) progenitor cells. We examined changes in the apelinergic system during normal mouse pregnancy and in pregnancies complicated by glucose intolerance with reduced BCM. Expression of Aplnr, Apelin and Apela was quantified in Ins+Glut2LO cells isolated from mouse pancreata and found to be significantly higher than in mature β-cells by DNA microarray and qPCR. Apelin was localized to most β-cells by immunohistochemistry although Aplnr was predominantly associated with Ins+Glut2LO cells. Aplnr-staining cells increased three- to four-fold during pregnancy being maximal at gestational days (GD) 9–12 but were significantly reduced in glucose intolerant mice. Apelin-13 increased β-cell proliferation in isolated mouse islets and INS1E cells, but not glucose-stimulated insulin secretion. Glucose intolerant pregnant mice had significantly elevated serum Apelin levels at GD 9 associated with an increased presence of placental IL-6. Placental expression of the apelinergic axis remained unaltered, however. Results show that the apelinergic system is highly expressed in pancreatic β-cell progenitors and may contribute to β-cell proliferation in pregnancy.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Daniela Nasteska ◽  
Nicholas H. F. Fine ◽  
Fiona B. Ashford ◽  
Federica Cuozzo ◽  
Katrina Viloria ◽  
...  

AbstractTranscriptionally mature and immature β-cells co-exist within the adult islet. How such diversity contributes to insulin release remains poorly understood. Here we show that subtle differences in β-cell maturity, defined using PDX1 and MAFA expression, contribute to islet operation. Functional mapping of rodent and human islets containing proportionally more PDX1HIGH and MAFAHIGH β-cells reveals defects in metabolism, ionic fluxes and insulin secretion. At the transcriptomic level, the presence of increased numbers of PDX1HIGH and MAFAHIGH β-cells leads to dysregulation of gene pathways involved in metabolic processes. Using a chemogenetic disruption strategy, differences in PDX1 and MAFA expression are shown to depend on islet Ca2+ signaling patterns. During metabolic stress, islet function can be restored by redressing the balance between PDX1 and MAFA levels across the β-cell population. Thus, preserving heterogeneity in PDX1 and MAFA expression, and more widely in β-cell maturity, might be important for the maintenance of islet function.


2020 ◽  
Vol 33 (5) ◽  
pp. 671-674
Author(s):  
Tashunka Taylor-Miller ◽  
Jayne Houghton ◽  
Paul Munyard ◽  
Yadlapalli Kumar ◽  
Clinda Puvirajasinghe ◽  
...  

AbstractBackgroundCongenital hyperinsulinism (CHI), a condition characterized by dysregulation of insulin secretion from the pancreatic β cells, remains one of the most common causes of hyperinsulinemic, hypoketotic hypoglycemia in the newborn period. Mutations in ABCC8 and KCNJ11 constitute the majority of genetic forms of CHI.Case presentationA term macrosomic male baby, birth weight 4.81 kg, born to non-consanguineous parents, presented on day 1 of life with severe and persistent hypoglycemia. The biochemical investigations confirmed a diagnosis of CHI. Diazoxide was started and progressively increased to 15 mg/kg/day to maintain normoglycemia. Sequence analysis identified compound heterozygous mutations in ABCC8 c.4076C>T and c.4119+1G>A inherited from the unaffected father and mother, respectively. The mutations are reported pathogenic. The patient is currently 7 months old with a sustained response to diazoxide.ConclusionsBiallelic ABCC8 mutations are known to result in severe, diffuse, diazoxide-unresponsive hypoglycemia. We report a rare patient with CHI due to compound heterozygous mutations in ABCC8 responsive to diazoxide.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nana Kobayashi ◽  
Shogo Okazaki ◽  
Oltea Sampetrean ◽  
Junichiro Irie ◽  
Hiroshi Itoh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document