The annual cycle of the global ocean circulation as determined by 4D VAR data assimilation

2001 ◽  
Vol 48 (1) ◽  
pp. 73-119 ◽  
Author(s):  
Manfred Wenzel ◽  
Jens Schröter ◽  
Dirk Olbers
2001 ◽  
Vol 2001.11 (0) ◽  
pp. 221-222
Author(s):  
Kinji BABA ◽  
Toshiyuki AWAJI ◽  
Nozomi SUGIURA ◽  
Syuhei MASUDA ◽  
Qin JIANG ◽  
...  

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Carine G. van der Boog ◽  
Henk A. Dijkstra ◽  
Julie D. Pietrzak ◽  
Caroline A. Katsman

AbstractDouble-diffusive processes enhance diapycnal mixing of heat and salt in the open ocean. However, observationally based evidence of the effects of double-diffusive mixing on the global ocean circulation is lacking. Here we analyze the occurrence of double-diffusive thermohaline staircases in a dataset containing over 480,000 temperature and salinity profiles from Argo floats and Ice-Tethered Profilers. We show that about 14% of all profiles contains thermohaline staircases that appear clustered in specific regions, with one hitherto unknown cluster overlying the westward flowing waters of the Tasman Leakage. We estimate the combined contribution of double-diffusive fluxes in all thermohaline staircases to the global ocean’s mechanical energy budget as 7.5 GW [0.1 GW; 32.8 GW]. This is small compared to the estimated energy required to maintain the observed ocean stratification of roughly 2 TW. Nevertheless, we suggest that the regional effects, for example near Australia, could be pronounced.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2006 ◽  
Vol 56 (5-6) ◽  
pp. 543-567 ◽  
Author(s):  
Barnier Bernard ◽  
Gurvan Madec ◽  
Thierry Penduff ◽  
Jean-Marc Molines ◽  
Anne-Marie Treguier ◽  
...  

2017 ◽  
Vol 63 (240) ◽  
pp. 573-580 ◽  
Author(s):  
CHRISTIAN T. WILD ◽  
OLIVER J. MARSH ◽  
WOLFGANG RACK

ABSTRACTGrounding zones are vital to ice-sheet mass balance and its coupling to the global ocean circulation. Processes here determine the mass discharge from the grounded ice sheet, to the floating ice shelves. The response of this transition zone to tidal forcing has been described by both elastic and viscoelastic models. Here we examine the validity of these models for grounding zone flexure over tidal timescales using field data from the Southern McMurdo Ice Shelf (78° 15′S, 167° 7′E). Observations of tidal movement were carried out by simultaneous tiltmeter and GPS measurements along a profile across the grounding zone. Finite-element simulations covering a 64 d period reveal that the viscoelastic model fits best the observations using a Young's modulus of 1.6 GPa and a viscosity of 1013.7 Pa s (≈ 50.1 TPa s). We conclude that the elastic model is only well-constrained for tidal displacements >35% of the spring-tidal amplitude using a Young's modulus of 1.62 ± 0.69 GPa, but that a viscoelastic model is necessary to adequately capture tidal bending at amplitudes below this threshold. In grounding zones where bending stresses are greater than at the Southern McMurdo Ice Shelf or ice viscosity is lower, the threshold would be even higher.


1997 ◽  
Vol 102 (C3) ◽  
pp. 5531-5551 ◽  
Author(s):  
Robert H. Tyler ◽  
Lawrence A. Mysak ◽  
Josef M. Oberhuber

1998 ◽  
Vol 363 ◽  
pp. 229-252 ◽  
Author(s):  
GREGORY F. LANE-SERFF ◽  
PETER G. BAINES

Properties of the flow generated by a continuous source of dense fluid on a slope in a rotating system are investigated with a variety of laboratory experiments. The dense fluid may initially flow down the slope but it turns (under the influence of rotation) to flow along the slope, and initial geostrophic adjustment gives it an anticyclonic velocity profile. Some of the dense fluid drains downslope in a viscous Ekman layer, which may become unstable to growing waves. Provided that the viscous draining is not too strong, cyclonic vortices form periodically in the upper layer and the dense flow breaks up into a series of domes. Three processes may contribute to the formation of these eddies. First, initial downslope flow of the dense current may stretch columns of ambient fluid by the ‘Taylor column’ process (which we term ‘capture’). Secondly, the initial geostrophic adjustment implies lower-layer collapse which may stretch the fluid column, and thirdly, viscous drainage will progressively stretch and spin up a captured water column. Overall this last process may be the most significant, but viscous drainage has contradictory effects, in that it progressively removes dense lower-layer fluid which terminates the process when the layer thickness approaches that of the Ekman layer. The eddies produced propagate along the slope owing to the combined effects of buoyancy–Coriolis balance and ‘beta-gyres’. This removes fluid from the vicinity of the source and causes the cycle to repeat. The vorticity of the upper-layer cyclones increases linearly with Γ=Lα/D (where L is the Rossby deformation radius, α the bottom slope and D the total depth), reaching approximately 2f in the experiments presented here. The frequency at which the eddy/dome structures are produced also increases with Γ, while the speed at which the structures propagate along the slope is reduced by viscous effects. The flow of dense fluid on slopes is a very important part of the global ocean circulation system and the implications of the laboratory experiments for oceanographic flows are discussed.


2021 ◽  
pp. 50-66
Author(s):  
V. N. Stepanov ◽  
◽  
Yu. D. Resnyanskii ◽  
B. S. Strukov ◽  
A. A. Zelen’ko ◽  
...  

The quality of simulation of model fields is analyzed depending on the assimilation of various types of data using the PDAF software product assimilating synthetic data into the NEMO global ocean model. Several numerical experiments are performed to simulate the ocean–sea ice system. Initially, free model was run with different values of the coefficients of horizontal turbulent viscosity and diffusion, but with the same atmospheric forcing. The model output obtained with higher values of these coefficients was used to determine the first guess fields in subsequent experiments with data assimilation, while the model results with lower values of the coefficients were assumed to be true states, and a part of these results was used as synthetic observations. The results are analyzed that are assimilation of various types of observational data using the Kalman filter included through the PDAF to the NEMO model with real bottom topography. It is shown that a degree of improving model fields in the process of data assimilation is highly dependent on the structure of data at the input of the assimilation procedure.


2018 ◽  
Author(s):  
Benoît Tranchant ◽  
Elisabeth Remy ◽  
Eric Greiner ◽  
Olivier Legalloudec

Abstract. Monitoring Sea Surface Salinity (SSS) is important for understanding and forecasting the ocean circulation. It is even crucial in the context of the acceleration of the water cycle. Until recently, SSS was one of the less observed essential ocean variables. Only sparse in situ observations, most often closer to 5 meters deep than the surface, were available to estimate the SSS. The recent satellite missions of ESA's SMOS, NASA's Aquarius, and now SMAP have made possible for the first time to measure SSS from space. The SSS drivers can be quite different than the temperature ones. The model SSS can suffer from significant errors coming not only from the ocean dynamical model but also the atmospheric precipitation and evaporation as well as ice melting and river runoff. Satellite SSS can bring a valuable additional constraint to control the model salinity. In the framework of the SMOS Nino 2015 ESA project (https://www.godae-oceanview.org/projects/smos-nino15/), the impact of satellite SSS data assimilation is assessed with the Met Office and Mercator Ocean global ocean analysis and forecasting systems with a focus on the Tropical Pacific region. This article presents the analysis of an Observing System Experiment (OSE) conducted with the 1/4° resolution Mercator Ocean analysis and forecasting system. SSS data assimilation constrains the model SSS to be closer to the observations in a coherent way with the other data sets already routinely assimilated in an operational context. Globally, the SMOS SSS assimilation has a positive impact in salinity over the top 30 meters. Comparisons to independent data sets show a small but positive impact. The sea surface height (SSH) has also been impacted by implying a reinforcement of TIWs during the El-Niño 2015/16 event. Finally, this study helped us to progress in the understanding of the biases and errors that can degrade the SMOS SSS performance.


Sign in / Sign up

Export Citation Format

Share Document