scholarly journals Viscosity and elasticity: a model intercomparison of ice-shelf bending in an Antarctic grounding zone

2017 ◽  
Vol 63 (240) ◽  
pp. 573-580 ◽  
Author(s):  
CHRISTIAN T. WILD ◽  
OLIVER J. MARSH ◽  
WOLFGANG RACK

ABSTRACTGrounding zones are vital to ice-sheet mass balance and its coupling to the global ocean circulation. Processes here determine the mass discharge from the grounded ice sheet, to the floating ice shelves. The response of this transition zone to tidal forcing has been described by both elastic and viscoelastic models. Here we examine the validity of these models for grounding zone flexure over tidal timescales using field data from the Southern McMurdo Ice Shelf (78° 15′S, 167° 7′E). Observations of tidal movement were carried out by simultaneous tiltmeter and GPS measurements along a profile across the grounding zone. Finite-element simulations covering a 64 d period reveal that the viscoelastic model fits best the observations using a Young's modulus of 1.6 GPa and a viscosity of 1013.7 Pa s (≈ 50.1 TPa s). We conclude that the elastic model is only well-constrained for tidal displacements >35% of the spring-tidal amplitude using a Young's modulus of 1.62 ± 0.69 GPa, but that a viscoelastic model is necessary to adequately capture tidal bending at amplitudes below this threshold. In grounding zones where bending stresses are greater than at the Southern McMurdo Ice Shelf or ice viscosity is lower, the threshold would be even higher.

2020 ◽  
Vol 66 (258) ◽  
pp. 643-657 ◽  
Author(s):  
Cyrille Mosbeux ◽  
Till J. W. Wagner ◽  
Maya K. Becker ◽  
Helen A. Fricker

AbstractThe Antarctic Ice Sheet loses mass via its ice shelves predominantly through two processes: basal melting and iceberg calving. Iceberg calving is episodic and infrequent, and not well parameterized in ice-sheet models. Here, we investigate the impact of hydrostatic forces on calving. We develop two-dimensional elastic and viscous numerical frameworks to model the ‘footloose’ calving mechanism. This mechanism is triggered by submerged ice protrusions at the ice front, which induce unbalanced buoyancy forces that can lead to fracturing. We compare the results to identify the different roles that viscous and elastic deformations play in setting the rate and magnitude of calving events. Our results show that, although the bending stresses in both frameworks share some characteristics, their differences have important implications for modeling the calving process. In particular, the elastic model predicts that maximum stresses arise farther from the ice front than in the viscous model, leading to larger calving events. We also find that the elastic model would likely lead to more frequent events than the viscous one. Our work provides a theoretical framework for the development of a better understanding of the physical processes that govern glacier and ice-shelf calving cycles.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Carine G. van der Boog ◽  
Henk A. Dijkstra ◽  
Julie D. Pietrzak ◽  
Caroline A. Katsman

AbstractDouble-diffusive processes enhance diapycnal mixing of heat and salt in the open ocean. However, observationally based evidence of the effects of double-diffusive mixing on the global ocean circulation is lacking. Here we analyze the occurrence of double-diffusive thermohaline staircases in a dataset containing over 480,000 temperature and salinity profiles from Argo floats and Ice-Tethered Profilers. We show that about 14% of all profiles contains thermohaline staircases that appear clustered in specific regions, with one hitherto unknown cluster overlying the westward flowing waters of the Tasman Leakage. We estimate the combined contribution of double-diffusive fluxes in all thermohaline staircases to the global ocean’s mechanical energy budget as 7.5 GW [0.1 GW; 32.8 GW]. This is small compared to the estimated energy required to maintain the observed ocean stratification of roughly 2 TW. Nevertheless, we suggest that the regional effects, for example near Australia, could be pronounced.


2020 ◽  
Vol 33 (6) ◽  
pp. 2111-2130
Author(s):  
Woo Geun Cheon ◽  
Jong-Seong Kug

AbstractIn the framework of a sea ice–ocean general circulation model coupled to an energy balance atmospheric model, an intensity oscillation of Southern Hemisphere (SH) westerly winds affects the global ocean circulation via not only the buoyancy-driven teleconnection (BDT) mode but also the Ekman-driven teleconnection (EDT) mode. The BDT mode is activated by the SH air–sea ice–ocean interactions such as polynyas and oceanic convection. The ensuing variation in the Antarctic meridional overturning circulation (MOC) that is indicative of the Antarctic Bottom Water (AABW) formation exerts a significant influence on the abyssal circulation of the globe, particularly the Pacific. This controls the bipolar seesaw balance between deep and bottom waters at the equator. The EDT mode controlled by northward Ekman transport under the oscillating SH westerly winds generates a signal that propagates northward along the upper ocean and passes through the equator. The variation in the western boundary current (WBC) is much stronger in the North Atlantic than in the North Pacific, which appears to be associated with the relatively strong and persistent Mindanao Current (i.e., the southward flowing WBC of the North Pacific tropical gyre). The North Atlantic Deep Water (NADW) formation is controlled by salt advected northward by the North Atlantic WBC.


2006 ◽  
Vol 56 (5-6) ◽  
pp. 543-567 ◽  
Author(s):  
Barnier Bernard ◽  
Gurvan Madec ◽  
Thierry Penduff ◽  
Jean-Marc Molines ◽  
Anne-Marie Treguier ◽  
...  

2017 ◽  
Author(s):  
Ralph Timmermann ◽  
Sebastian Goeller

Abstract. A Regional Antarctic and Global Ocean (RAnGO) model has been developed to study the interaction between the world ocean and the Antarctic ice sheet. The coupled model is based on a global implementation of the Finite Element Sea-ice Ocean Model (FESOM) with a mesh refinement in the Southern Ocean, particularly in its marginal seas and in the sub-ice shelf cavities. The cryosphere is represented by a regional setup of the ice flow model RIMBAY comprising the Filchner-Ronne Ice Shelf and the grounded ice in its catchment area up to the ice divides. At the base of the RIMBAY ice shelf, melt rates from FESOM's ice-shelf component are supplied. RIMBAY returns ice thickness and the position of the grounding line. The ocean model uses a pre-computed mesh to allow for an easy adjustment of the model domain to a varying cavity geometry. RAnGO simulations with a 20th-century climate forcing yield realistic basal melt rates and a quasi-stable grounding line position close to the presently observed state. In a centennial-scale warm-water-inflow scenario, the model suggests a substantial thinning of the ice shelf and a local retreat of the grounding line. The potentially negative feedback from ice-shelf thinning through a rising in-situ freezing temperature is more than outweighed by the increasing water column thickness in the deepest parts of the cavity. Compared to a control simulation with fixed ice-shelf geometry, the coupled model thus yields a slightly stronger increase of ice-shelf basal melt rates.


1997 ◽  
Vol 102 (C3) ◽  
pp. 5531-5551 ◽  
Author(s):  
Robert H. Tyler ◽  
Lawrence A. Mysak ◽  
Josef M. Oberhuber

1998 ◽  
Vol 363 ◽  
pp. 229-252 ◽  
Author(s):  
GREGORY F. LANE-SERFF ◽  
PETER G. BAINES

Properties of the flow generated by a continuous source of dense fluid on a slope in a rotating system are investigated with a variety of laboratory experiments. The dense fluid may initially flow down the slope but it turns (under the influence of rotation) to flow along the slope, and initial geostrophic adjustment gives it an anticyclonic velocity profile. Some of the dense fluid drains downslope in a viscous Ekman layer, which may become unstable to growing waves. Provided that the viscous draining is not too strong, cyclonic vortices form periodically in the upper layer and the dense flow breaks up into a series of domes. Three processes may contribute to the formation of these eddies. First, initial downslope flow of the dense current may stretch columns of ambient fluid by the ‘Taylor column’ process (which we term ‘capture’). Secondly, the initial geostrophic adjustment implies lower-layer collapse which may stretch the fluid column, and thirdly, viscous drainage will progressively stretch and spin up a captured water column. Overall this last process may be the most significant, but viscous drainage has contradictory effects, in that it progressively removes dense lower-layer fluid which terminates the process when the layer thickness approaches that of the Ekman layer. The eddies produced propagate along the slope owing to the combined effects of buoyancy–Coriolis balance and ‘beta-gyres’. This removes fluid from the vicinity of the source and causes the cycle to repeat. The vorticity of the upper-layer cyclones increases linearly with Γ=Lα/D (where L is the Rossby deformation radius, α the bottom slope and D the total depth), reaching approximately 2f in the experiments presented here. The frequency at which the eddy/dome structures are produced also increases with Γ, while the speed at which the structures propagate along the slope is reduced by viscous effects. The flow of dense fluid on slopes is a very important part of the global ocean circulation system and the implications of the laboratory experiments for oceanographic flows are discussed.


2001 ◽  
Vol 48 (1) ◽  
pp. 73-119 ◽  
Author(s):  
Manfred Wenzel ◽  
Jens Schröter ◽  
Dirk Olbers

Sign in / Sign up

Export Citation Format

Share Document