97/02194 Biomass-gasifier/aeroderivative gas turbine combined cycles: Part B—performance calculations and economic assessment

1997 ◽  
Vol 38 (3) ◽  
pp. 176
Author(s):  
Maria Jonsson ◽  
Jinyue Yan

This study is an economic assessment of evaporative and steam-injected cycles based on three gas turbines (Trent, GTX100 and Cyclone). The evaporative cycles included part or full flow humidification and steam injection. For the Trent and GTX100, part flow cases had the lowest costs of electricity (32.6 mills/kWh and 30.9 mills/kWh, respectively), while a full flow case had the lowest cost of electricity (35.3 mills/kWh) for the Cyclone. However, the cost variations between different cycles were small: below 1% (0.4 mills/kWh) for the GTX100 and Cyclone cases and below 3% (0.9 mills/kWh) for the Trent cases. The specific investment costs were lower for part flow evaporative cycles than for full flow cycles, while steam-injected cycles had the lowest specific investment costs. The Trent and GTX100 evaporative cycles had significantly lower total and specific investment costs than combined cycles, while the costs of electricity were approximately the same.


1996 ◽  
Vol 118 (3) ◽  
pp. 516-525 ◽  
Author(s):  
S. Consonni ◽  
E. D. Larson

Gas turbines fueled by integrated biomass gasifiers are a promising option for base-load electricity generation from a renewable resource. Aeroderivative turbines, which are characterized by high efficiencies in small units, are of special interest because transportation costs for biomass constrain conversion facilities to relatively modest scales. Part A of this two-part paper reviewed commercial development activities and major technological issues associated with biomass integrated-gasifier/gas turbine (BIG/GT) combined cycle power generation. Based on the computational model also described in Part A, this paper (Part B) presents results of detailed design-point performance calculations for several BIG/GT combined cycle configurations. Emphasis is given to systems now being proposed for commercial installation in the 25–30 MWe, power output range. Three different gasifier designs are considered: air-blown, pressurized fluidized-bed gasification; air-blown, near-atmospheric pressure fluidized-bed gasification; and near-atmospheric pressure, indirectly heated fluidized-bed gasification. Advanced combined cycle configurations (including with intercooling) with outputs from 22 to 75 MW are also explored. An economic assessment is also presented, based on preliminary capital cost estimates for BIG/GT combined cycles and expected biomass costs in several regions of the world.


1996 ◽  
Vol 118 (3) ◽  
pp. 507-515 ◽  
Author(s):  
S. Consonni ◽  
E. D. Larson

Gas turbines fueled by integrated biomass gasifiers are a promising option for base load electricity generation from a renewable resource. Aeroderivative turbines, which are characterized by high efficiencies at smaller scales, are of special interest because transportation costs for biomass constrain biomass conversion facilities to relatively modest scales. Commercial development activities and major technological issues associated with biomass integrated-gasifier/gas turbine (BIG/GT) combined cycle power generation are reviewed in Part A of this two-part paper. Also, the computational model and the assumptions used to predict the overall performance of alternative BIG/GT cycles are outlined. The model evaluates appropriate value of key parameters (turbomachinery efficiencies, gas turbine cooling flows, steam production in the heat recovery steam generator, etc.) and then carries out energy, mass, and chemical species balances for each plant component, with iterations to insure whole-plant consistency. Part B of the paper presents detailed comparisons of the predicted performance of systems now being proposed for commercial installation in the 25–30 MWe power output range, as well as predictions for advanced combined cycle configurations (including with intercooling) with outputs from 22 to 75 MWe. Finally, an economic assessment is presented, based on preliminary capital cost estimates for BIG/GT combined cycles.


Author(s):  
Kari Anne Tveitaskog ◽  
Fredrik Haglind

This paper is aimed at designing and optimizing combined cycles for marine applications. For this purpose, an in-house numerical simulation tool called DNA (Dynamic Network Analysis) and a genetic algorithm-based optimization routine are used. The top cycle is modeled as the aero-derivative gas turbine LM2500, while four options for bottoming cycles are modeled. Firstly, a single pressure steam cycle, secondly a dual-pressure steam cycle, thirdly an ORC using toluene as the working fluid and an intermediate oil loop as the heat carrier, and lastly an ABC with inter-cooling are modeled. Furthermore, practical and operational aspects of using these three machinery systems for a high-speed ferry are discussed. Two scenarios are evaluated. The first scenario evaluates the combined cycles with a given power requirement, optimizing the combined cycle while operating the gas turbine at part load. The second scenario evaluates the combined cycle with the gas turbine operated at full load. For the first scenario, the results suggest that the thermal efficiencies of the combined gas and steam cycles are 46.3% and 48.2% for the single pressure and dual pressure steam cycles, respectively. The gas ORC and gas ABC combined cycles obtained thermal efficiencies of 45.6% and 41.9%, respectively. For the second scenario, the results suggest that the thermal efficiencies of the combined gas and steam cycles are 53.5% and 55.3% for the single pressure and dual pressure steam cycles, respectively. The gas ORC and gas ABC combined cycles obtained thermal efficiencies of 51.0% and 47.8%, respectively.


Author(s):  
R. Chacartegui ◽  
D. Sa´nchez ◽  
F. Jime´nez-Espadafor ◽  
A. Mun˜oz ◽  
T. Sa´nchez

The development of high efficiency solar power plants based on gas turbine technology presents two problems, both of them directly associated with the solar power plant receiver design and the power plant size: lower turbine intake temperature and higher pressure drops in heat exchangers than in a conventional gas turbine. To partially solve these problems, different configurations of combined cycles composed of a closed cycle carbon dioxide gas turbine as topping cycle have been analyzed. The main advantage of the Brayton carbon dioxide cycle is its high net shaft work to expansion work ratio, in the range of 0.7–0.85 at supercritical compressor intake pressures, which is very close to that of the Rankine cycle. This feature will reduce the negative effects of pressure drops and will be also very interesting for cycles with moderate turbine inlet temperature (800–1000 K). Intercooling and reheat options are also considered. Furthermore, different working fluids have been analyzed for the bottoming cycle, seeking the best performance of the combined cycle in the ranges of temperatures considered.


2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Ahmed Abdel Rahman ◽  
Esmail M. A. Mokheimer

Cooling the air before entering the compressor of a gas turbine of combined cycle power plants is an effective method to boost the output power of the combined cycles in hot regions. This paper presents a comparative analysis for the effect of different air cooling technologies on increasing the output power of a combined cycle. It also presents a novel system of cooling the gas turbine inlet air using a solar-assisted absorption chiller. The effect of ambient air temperature and relative humidity on the output power is investigated and reported. The study revealed that at the design hour under the hot weather conditions, the total net power output of the plant drops from 268 MW to 226 MW at 48 °C (15.5% drop). The increase in the power output using fogging and evaporative cooling is less than that obtained with chillers since their ability to cool down the air is limited by the wet-bulb temperature. Integrating conventional and solar-assisted absorption chillers increased the net power output of the combined cycle by about 35 MW and 38 MW, respectively. Average and hourly performance during typical days have been conducted and presented. The plants without air inlet cooling system show higher carbon emissions (0.73 kg CO2/kWh) compared to the plant integrated with conventional and solar-assisted absorption chillers (0.509 kg CO2/kWh) and (0.508 kg CO2/kWh), respectively. Also, integrating a conventional absorption chiller shows the lowest capital cost and levelized electricity cost (LEC).


Author(s):  
R. L. Evans ◽  
M. S. Sinclair ◽  
G. A. Constable ◽  
T. Halewood

A technical and economic assessment of an indirectly fired gas turbine cogeneration system is presented. The plant is designed for use in a sawmill, burning sawdust to generate both electricity and process heat to dry the lumber. After being dried, the sawdust is burned in a specially designed combustor which incorporates both radiant and convective heat transfer sections to generate a supply of air heated to 760 C (1400). This hot air drives the gas turbine and then the exhaust stream is utilized as a heat source for drying lumber in the dry-kilns. A materials and energy balance is presented which shows that there is more than enough sawdust available in a typical sawmill to supply all of the process heat requirements and to generate most of the electricity required to operate the mill machinery. This site-specific feasibility study indicates that an indirectly-fired gas turbine cogeneration system should be both technically and economically viable for application in a sawmill producing dried softwood lumber.


Author(s):  
K. K. Botros ◽  
D. Sennhauser ◽  
L. Siarkowski

Concerns about the effects of greenhouse gas emissions on the Earth’s climate have lead to a considerable focus by the public and governments on the levels of emissions that are generated by industrial activities. In Canada, it has been recognized that gas transmission systems are rated second in overall CO2 production in the Natural Gas Industry (next to gas processing). Most of the gas transmission systems are powered by gas turbines at compressor stations resulting in significant CO2 emissions (at the rate of ∼ 6 kilo tonnes/ per MW-year). This can be reduced if the CO2 can be separated from the gas turbine exhaust stream and directed for reuse or sequestration. This paper presents results of techno-thermodynamic assessment of two power cycle adjustments to increase CO2 concentrations in the exhaust gas from turbines. The working fluid in the two semi-closed cycles are made rich in CO2, thus making it easy to capture the CO2 from the flue gas by means of physical absorption techniques rather than by the conventional expensive amine adsorption methods. Additionally, the CO2 rich working fluid is shown to give rise to a higher exhaust gas temperature from the gas turbine semi-closed cycles, allowing a steam bottom cycle to be effective in augmenting the power delivered by the entire system by 50%, hence contributing to reducing emission by increasing the overall thermal efficiency of the system.


Sign in / Sign up

Export Citation Format

Share Document