Xanthan gum production under several operational conditions: molecular structure and rheological properties☆

2000 ◽  
Vol 26 (2-4) ◽  
pp. 282-291 ◽  
Author(s):  
J.A Casas ◽  
V.E Santos ◽  
F Garcı́a-Ochoa
2018 ◽  
Vol 13 (2) ◽  
pp. 186-197 ◽  
Author(s):  
Zoila Rosa Nieto Galván ◽  
Lucas de Souza Soares ◽  
Eber Antonio Alves Medeiros ◽  
Nilda de Fátima Ferreira Soares ◽  
Afonso Mota Ramos ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 693
Author(s):  
Rubén Llinares ◽  
Pablo Ramírez ◽  
José Antonio Carmona ◽  
Luis Alfonso Trujillo-Cayado ◽  
José Muñoz

In this work, nanoemulsion-based delivery system was developed by encapsulation of fennel essential oil. A response surface methodology was used to study the influence of the processing conditions in order to obtain monomodal nanoemulsions of fennel essential oil using the microchannel homogenization technique. Results showed that it was possible to obtain nanoemulsions with very narrow monomodal distributions that were homogeneous over the whole observation period (three months) when the appropriate mechanical energy was supplied by microfluidization at 14 MPa and 12 passes. Once the optimal processing condition was established, nanoemulsions were formulated with advanced performance xanthan gum, which was used as both viscosity modifier and emulsion stabilizer. As a result, more desirable results with enhanced physical stability and rheological properties were obtained. From the study of mechanical spectra as a function of aging time, the stability of the nanoemulsions weak gels was confirmed. The mechanical spectra as a function of hydrocolloid concentration revealed that the rheological properties are marked by the biopolymer network and could be modulated depending on the amount of added gum. Therefore, this research supports the role of advanced performance xanthan gum as a stabilizer of microfluidized fennel oil-in-water nanoemulsions. In addition, the results of this research could be useful to design and formulate functional oil-in-water nanoemulsions with potential application in the food industry for the delivery of nutraceuticals and antimicrobials.


2021 ◽  
Author(s):  
Sandra Ukaigwe

The rheological properties (yield stress and viscosity) of cereal straw suspensions are especially important in bioethanol production as they determine the mixing behaviour of the suspension during enzymatic hydrolysis. Yield stress measurements are generally difficult to perform in straw suspensions due to sedimentation, which commonly occur in the suspensions because of the difficulty encountered in loading the suspension into the measuring equipment. The process of placing the suspension in the measuring instrument causes a disturbance likely to induce the yielding of the suspension before the actual measurements are taken. Moreover cereal suspensions at high straw concentration (10-40 wt%) are soft solids and pourability is particularly difficult with solids. Rheological behavior of staw suspensions made from wheat, Oats and malt barley of fiber sizes 0.15 mm-4.20 mm (mesh sizes 20 to 100) and concentrations 5.0-15.0 wt% were studied. The suspensions were initially prepared by dispersing milled and sieved straws in distilled water at room temperature, followed by vortexing to aid the dispersion process; this was later modified to include a 30-minute de-aeration of the suspensions using vacuum and 2-minute mixing using a general purpose mixer at about 162 rpm. However, none these procedures produced a homogenous suspension. The viscosity of the dispersion medium was modified by the addition of Xanthan gum. This produced homogenous suspensions which remained suspended for about 20 minutes. The rheological properties of these suspensions were measured on a Bohlin rheometer in the controlled stress mode using a vane and cup measuring instrument, and the suspension yield stress determined by extrapolation and by regression of Herschel-Bulkley, Casson and Bingham models. Yield stress obtained from extrapolation ranged from 2-19 Pa, while model results ranged from 0.96- 8.15 Pa, for 5.0 wt% Oats straw suspensions with Xanthan gum strengths of 0.1-0.5 wt%. Extrapolation results for 7.5 wt% Oats staw suspensions with Xanthan gum strengths of 0.1-0.5 wt% ranged from 20-36 Pa while model results were in the range of 4.38-18.76 Pa. Wheat and malt barely straw suspensions evaluated using Herschel-Bulkley model at similiar Oats straw suspension conditions of 5.0 wt% fiber concentration with 0.3 wt% Xanthan gum strength produced statistically equivalent yields stress to Oats straw suspensions in the range of 2.31-4.04 Pa for fibers of mesh size 40-100. Cereal straw suspenions are non-Newtonian fluids with yield stresses that are highly straw concentration dependent.


2011 ◽  
Vol 477 ◽  
pp. 151-156 ◽  
Author(s):  
Dong Min Wang ◽  
Zhi Hua Liu ◽  
Wei Feng Xiong

The rheological property is the best method which can directly reflect the dispersion property of polymer surfactants. In this paper, the rheological properties in the systems of pure cement, cement/fly ash and cement/silica fume with polycarboxylate superplasticizers of different molecular structures were studied. The effect of molecular structure on shear sress, apparent viscosity and thixotropy in compound cementitious systems was expatiated. At last, the rules of mineral admixture to the system’ rheological property and the relations between adsorption amount and rheological properties were put forward.


2005 ◽  
Vol 15 (2) ◽  
pp. 90-97 ◽  
Author(s):  
M. P. Escudier ◽  
J. Clement-Evans ◽  
R. J. Poole

Abstract There is often a need to perform rheological tests on dilute polymeric liquids at a time long after their initial preparation, for example if a more sensitive or novel method of measuring a material property (such as uniaxial/biaxial extensional viscosity or second normal-stress differences) becomes available. An inexpensive method of storing such fluids which prevents any form of deterioration (e.g. bacteriological) would therefore be of great value. This study explores the potential of freezing as that storage process by investigating whether the freeze-thaw process itself leads to rheological changes. The rheological properties of three polymeric liquids: 0.25 % xanthan gum, 0.125% polyacrylamide and a 0.1 %/0.1 % carboxymethylcellulose / xanthan gum blend commonly used in non-Newtonian fluid flow studies were determined in both shear and oscillation before and after a freeze-thaw process. Within the uncertainty of the rheometer used, the rheological properties of the polymers studied were found to be unaffected by the freeze-thaw process leading to the conclusion that this storage method is indeed a practical possibility.


2018 ◽  
Vol 11 (12) ◽  
pp. 2131-2141 ◽  
Author(s):  
M. E. Martín-Esparza ◽  
M. D. Raigón ◽  
A. Raga ◽  
A. Albors

2007 ◽  
Vol 111 (25) ◽  
pp. 7073-7077 ◽  
Author(s):  
Stephen C. Peterangelo ◽  
Robert T. Hart ◽  
Aurora E. Clark

RSC Advances ◽  
2015 ◽  
Vol 5 (11) ◽  
pp. 7819-7831 ◽  
Author(s):  
Md. Tariqul Islam ◽  
P. Ganesan ◽  
Ji Cheng

The motion and interaction of a bubble pair in a non-Newtonian fluid are numerically simulated by a volume of fluid method. The effects of initial horizontal bubble interval, oblique alignment and fluid rheological properties on the pair of rising bubbles are evaluated.


Sign in / Sign up

Export Citation Format

Share Document