fennel oil
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 3)

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260172
Author(s):  
Shawky M. Aboelhadid ◽  
Waleed M. Arafa ◽  
Abdel-Azeem S. Abdel-Baki ◽  
Atalay Sokmen ◽  
Saleh Al-Quraishy ◽  
...  

Globally, the economic losses due to hard ticks infestation and the control of the associated diseases have been calculated at USD $13.9–18.7 billion per year. The economic impact is related to its direct damage to the skins, blood loss, anemia, severe immunological reactions and indirect losses that related to the effects of hemoparasites, cost of treatment for clinical cases and expenses incurred in the control of ticks. The current study evaluated the acaricidal activities of fennel Foeniculum vulgare essential oil and its main components; trans-anethole and fenchone; against R. annulatus. GC–MS analysis revealed that this oil contained 16 components representing 99.9% of the total identified compounds with E-anethole being the predominant component(64.29%), followed by fenchone (9.94%). The fennel oil and trans-anethole showed significant acaricidal activities. The LC50 of the fennel oil was attained at concentrations of 12.96% for adult ticks and 1.75% for tick larvae meanwhile the LC50 of trans-anethole was reached at concentrations of 2.36% for adult tick and 0.56% for tick larvae. On the contrary, fenchone showed no any significant adulticidal activities and its LC50 attained at a concentration of 9.11% for tick larvae. Regarding repellence activities, trans-anethole achieved 100% repellency at the concentration of 10% while fennel showed 86% repellency at the same concentration. Fenchone showed no repellency effect. Treatment of larvae with fennel, trans-anethole, and fenchone LC50 concentrations significantly inhibited the acetylcholinesterase activity. Meanwhile, glutathione s-transferase activity was significantly decreased in fennel treated larvae but no significant effect was found in the larvae of trans-anethole and fenchone groups. These results indicate that the acaricide effect of fennel oil may attributed to its high content of trans-anethole. This was supported by potent adulticidal, larvicidal, and repellency effects of trans-anethole against Rhipeciphalus annulatus tick and therefore it could be included in the list of acaricide of plant origin.


Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1797
Author(s):  
Tharwat Imbabi ◽  
Islam Sabeq ◽  
Ali Osman ◽  
Kamal Mahmoud ◽  
Shimaa A. Amer ◽  
...  

In the current study, fennel essential oil was used as an antibiotic alternative compared to gentamycin for enhancing the expression of apoptosis genes and antioxidant enzymes in weaned rabbits as well as meat quality and growth performance. The gene expression of the cell lymphoma 2 (BAX and BCL2), caspase3 (CASP3), and glutathione peroxidase (GPX1) were estimated in the liver tissue using qRT-PCR. A total of 45 Moshtohor weaned male rabbits aged four weeks were randomly allocated to control, T1, and T2 treatment groups; each consisted of 15 weaned male rabbits with five replicates. Rabbits in the T1 and T2 groups were orally supplied with 1 mL fennel oil and 1 mL gentamycin, respectively. Weaned rabbits under different treatments showed increased body weight (BW) at 8 and 12 weeks of age and average daily gain (ADG) at 4–8 and 4–12 weeks of age compared to the control group. Compared to the controls, the weaned rabbits supplemented with fennel oil and gentamycin had lower total cholesterol, triglyceride, and MDA. In addition, villus length, mRNA of BAX, BCL2, Casp3, and GPX were increased in the different treatments compared to the control. Furthermore, the meat of these rabbits was less tender, had a lower aerobic plate count (APC), pH, and was brighter and redder in color than the control. Under the conditions of the present study, the supplementation of weaned Moshtohor rabbits with fennel oil as a natural alternative for gentamycin enhanced feed conversion and daily gain through enhancing villus length and mucus thickness. Additionally, fennel essential oil reduces oxidative stress by increasing the antioxidant enzymes.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 693
Author(s):  
Rubén Llinares ◽  
Pablo Ramírez ◽  
José Antonio Carmona ◽  
Luis Alfonso Trujillo-Cayado ◽  
José Muñoz

In this work, nanoemulsion-based delivery system was developed by encapsulation of fennel essential oil. A response surface methodology was used to study the influence of the processing conditions in order to obtain monomodal nanoemulsions of fennel essential oil using the microchannel homogenization technique. Results showed that it was possible to obtain nanoemulsions with very narrow monomodal distributions that were homogeneous over the whole observation period (three months) when the appropriate mechanical energy was supplied by microfluidization at 14 MPa and 12 passes. Once the optimal processing condition was established, nanoemulsions were formulated with advanced performance xanthan gum, which was used as both viscosity modifier and emulsion stabilizer. As a result, more desirable results with enhanced physical stability and rheological properties were obtained. From the study of mechanical spectra as a function of aging time, the stability of the nanoemulsions weak gels was confirmed. The mechanical spectra as a function of hydrocolloid concentration revealed that the rheological properties are marked by the biopolymer network and could be modulated depending on the amount of added gum. Therefore, this research supports the role of advanced performance xanthan gum as a stabilizer of microfluidized fennel oil-in-water nanoemulsions. In addition, the results of this research could be useful to design and formulate functional oil-in-water nanoemulsions with potential application in the food industry for the delivery of nutraceuticals and antimicrobials.


2021 ◽  
Vol 1788 (1) ◽  
pp. 012018
Author(s):  
Susy Yunita Prabawati ◽  
Atika Yahdiyani ◽  
Yoga Saputra

2020 ◽  
Vol 33 (1) ◽  
pp. 62-71
Author(s):  
JOÁLISSON GONÇALVES DA SILVA ◽  
CARLOS HENRIQUE DE BRITO ◽  
LAÉSIO PEREIRA MARTINS ◽  
ROBÉRIO DE OLIVEIRA ◽  
LUCAS RODRIGUES GOMES

ABSTRACT Psidium guajava L. is widely cultivated in tropical and subtropical regions of the world. This research aimed to evaluate the effect of the use of biodegradable coating associated with different temperatures on the quality of 'Paluma' guava fruits infested by Ceratitis capitata Wiedemann on its control. The experiment was conducted in a completely randomized design in a 3 × 6 × 6 factorial scheme with three replicates. The factors under study were three temperatures 10 ºC, 15 ºC, and 23 ºC (room temperature) with six treatments each: Control - WoO WoC (without oviposition and without coating); WiO WoC (with oviposition and without coating); WiO+CCFO (without oviposition and coating containing fennel oil); WiO+CCFO (with oviposition and coating containing fennel oil); WoO+CCBO (without oviposition and coating containing basil oil); WoO+CCBO (with oviposition and coating containing basil oil). The treatments were evaluated in six periods according to the factors already mentioned. Physical, physical-chemical, biochemical and subjective evaluations were performed. Data were submitted to analysis of variance based on the significance of the F test and, in order to test the effect of storage days, the results were submitted to regression analysis. The use of biodegradable coating associated with low temperatures minimizes the loss of mass and promotes less loss of fruit firmness. The presence of C. capitata larvae depreciates the physical-chemical quality of guava fruits, but the coating process associated with low temperatures is lethal to eggs and larvae of C. capitata, reducing damage in fruits infested.


2020 ◽  
Author(s):  
Keyword(s):  

2020 ◽  
pp. 325-329
Author(s):  
Sabine Krist
Keyword(s):  

2020 ◽  
Vol 51 (3) ◽  
pp. 198-202
Author(s):  
Evah Sohipah ◽  
Anny Purba ◽  
Ratna Djamil

Background/Aim: Aim of this study was to develop efficient mosquito repellent by combining fennel oil (Foeniculum vulgare Mill) and cinnamon oil (Cinnamomum burmannii Blume) in a gel preparation form. Methods: Effectiveness of each oil and its combination as viral repellents was tested by the World Health Organization's Pesticide Evaluation Scheme (WHOPES) method. Repellent was prepared in gel form. Evaluation of gel preparation included organoleptic properties, homogeneity, pH, viscosity, flow properties, acute skin irritation test and effectiveness test as mosquito repellent. Results: The mosquito protection test for cinnamon oil showed that cinnamon oil was most effective at concentration of 15 % (96.85 %), and fennel oil at 24 % concentration (79.26 %). Within 6 hours, gel made of 24 % fennel oil and 15 % cinnamon oil combination gave protection against 53.49 % mosquitoes. Conclusion: The combination of cinnamon oil and fennel oil can be formulated into gel form with satisfying physical and chemical characteristics and effectiveness against Aedes aegypti mosquitoes for 6 hours.


Sign in / Sign up

Export Citation Format

Share Document