Laser acceleration of electrons and ions and intense secondary particle generation

2001 ◽  
Vol 46 (1) ◽  
pp. 375-377 ◽  
Author(s):  
D. Habs ◽  
G. Pretzler ◽  
A. Pukhov ◽  
J. Meyer-ter-vehn
2012 ◽  
Vol 78 (4) ◽  
pp. 321-322
Author(s):  
Chan Joshi ◽  
Wei Lu ◽  
Zhengming Sheng

Laser acceleration of particles is currently a very active area of research in Plasma Physics, with an emphasis on acceleration of electrons and ions using short but intense laser pulses. In this special issue we access the current status of this field by inviting leading researchers all over the world to contribute their original works here. Many of these results were first presented at the recent Laser-Particle Acceleration Workshop (LPAW 2011) held in Wuzhen, China in June 2011. In addition to the laser wakefield acceleration (LWFA) of electrons (Tzoufras et al.) and laser acceleration of ions (Tsung et al.), there were exciting new proposals for a proton-driven plasma wakefield accelerator (Xia et al.) and for a dielectric-structure-based two-beam accelerator (Gai et al.) presented at this workshop, and we are very pleased to have the authors' contributions on these included here.


Author(s):  
N. M. Astafyeva ◽  
N. A. Dobrotin ◽  
I. M. Dremin ◽  
E. L. Feinberg ◽  
L. A. Goncharova ◽  
...  

2008 ◽  
Vol 26 (2) ◽  
pp. 259-264 ◽  
Author(s):  
S. Bagchi ◽  
P. Prem Kiran ◽  
M.K. Bhuyan ◽  
S. Bose ◽  
P. Ayyub ◽  
...  

AbstractThe impact of nano-structured surfaces on particle generation from ultrashort intense laser produced plasmas is presented over an intensity range of 1015–1017 Wcm−2. The nano-structured surface evidently produces hotter plasma but does not lead to the generation of hotter ions, a counterintuitive result based on present understanding of plasma expansion mechanism. Although the total ion flux and energy is more in the case of structured surfaces, the average energy of the projectiles is found to be lower than that from polished surfaces. The nano-structured surface shows preferential enhancement of lower energy ions and an intensity dependent divergence of the ejected particles.


Author(s):  
Marylyn Bennett-Lilley ◽  
Thomas T.H. Fu ◽  
David D. Yin ◽  
R. Allen Bowling

Chemical Vapor Deposition (CVD) tungsten metallization is used to increase VLSI device performance due to its low resistivity, and improved reliability over other metallization schemes. Because of its conformal nature as a blanket film, CVD-W has been adapted to multiple levels of metal which increases circuit density. It has been used to fabricate 16 MBIT DRAM technology in a manufacturing environment, and is the metallization for 64 MBIT DRAM technology currently under development. In this work, we investigate some sources of contamination. One possible source of contamination is impurities in the feed tungsten hexafluoride (WF6) gas. Another is particle generation from the various reactor components. Another generation source is homogeneous particle generation of particles from the WF6 gas itself. The purpose of this work is to investigate and analyze CVD-W process-generated particles, and establish a particle characterization methodology.


Author(s):  
Charles W. Allen

With respect to structural consequences within a material, energetic electrons, above a threshold value of energy characteristic of a particular material, produce vacancy-interstial pairs (Frenkel pairs) by displacement of individual atoms, as illustrated for several materials in Table 1. Ion projectiles produce cascades of Frenkel pairs. Such displacement cascades result from high energy primary knock-on atoms which produce many secondary defects. These defects rearrange to form a variety of defect complexes on the time scale of tens of picoseconds following the primary displacement. A convenient measure of the extent of irradiation damage, both for electrons and ions, is the number of displacements per atom (dpa). 1 dpa means, on average, each atom in the irradiated region of material has been displaced once from its original lattice position. Displacement rate (dpa/s) is proportional to particle flux (cm-2s-1), the proportionality factor being the “displacement cross-section” σD (cm2). The cross-section σD depends mainly on the masses of target and projectile and on the kinetic energy of the projectile particle.


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


Author(s):  
Klaus-Ruediger Peters

Environmental SEM operate at specimen chamber pressures of ∼20 torr (2.7 kPa) allowing stabilization of liquid water at room temperature, working on rugged insulators, and generation of an environmental secondary electron (ESE) signal. All signals available in conventional high vacuum instruments are also utilized in the environmental SEM, including BSE, SE, absorbed current, CL, and X-ray. In addition, the ESEM allows utilization of the flux of charge carriers as information, providing exciting new signal modes not available to BSE imaging or to conventional high vacuum SEM.In the ESEM, at low vacuum, SE electrons are collected with a “gaseous detector”. This detector collects low energy electrons (and ions) with biased wires or plates similar to those used in early high vacuum SEM for SE detection. The detector electrode can be integrated into the first PLA or positioned at any other place resulting in a versatile system that provides a variety of surface information.


Sign in / Sign up

Export Citation Format

Share Document