Metabolic and Mechanical Energy Costs of Reducing Vertical Center of Mass Movement During Gait

2009 ◽  
Vol 2009 ◽  
pp. 74-75
Author(s):  
M. Pierrynowski
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Guillaume Fumery ◽  
Nicolas A. Turpin ◽  
Laetitia Claverie ◽  
Vincent Fourcassié ◽  
Pierre Moretto

AbstractThe biomechanics of load carriage has been studied extensively with regards to single individuals, yet not so much with regards to collective transport. We investigated the biomechanics of walking in 10 paired individuals carrying a load that represented 20%, 30%, or 40% of the aggregated body-masses. We computed the energy recovery rate at the center of mass of the system consisting of the two individuals plus the carried load in order to test to what extent the pendulum-like behavior and the economy of the gait were affected. Joint torque was also computed to investigate the intra- and inter-subject strategies occurring in response to this. The ability of the subjects to move the whole system like a pendulum appeared rendered obvious through shortened step length and lowered vertical displacements at the center of mass of the system, while energy recovery rate and total mechanical energy remained constant. In parallel, an asymmetry of joint moment vertical amplitude and coupling among individuals in all pairs suggested the emergence of a leader/follower schema. Beyond the 30% threshold of increased load mass, the constraints at the joint level were balanced among individuals leading to a degraded pendulum-like behavior.


1999 ◽  
Vol 86 (1) ◽  
pp. 383-390 ◽  
Author(s):  
Timothy M. Griffin ◽  
Neil A. Tolani ◽  
Rodger Kram

Walking humans conserve mechanical and, presumably, metabolic energy with an inverted pendulum-like exchange of gravitational potential energy and horizontal kinetic energy. Walking in simulated reduced gravity involves a relatively high metabolic cost, suggesting that the inverted-pendulum mechanism is disrupted because of a mismatch of potential and kinetic energy. We tested this hypothesis by measuring the fluctuations and exchange of mechanical energy of the center of mass at different combinations of velocity and simulated reduced gravity. Subjects walked with smaller fluctuations in horizontal velocity in lower gravity, such that the ratio of horizontal kinetic to gravitational potential energy fluctuations remained constant over a fourfold change in gravity. The amount of exchange, or percent recovery, at 1.00 m/s was not significantly different at 1.00, 0.75, and 0.50 G (average 64.4%), although it decreased to 48% at 0.25 G. As a result, the amount of work performed on the center of mass does not explain the relatively high metabolic cost of walking in simulated reduced gravity.


Author(s):  
Timothy Sullivan ◽  
Justin Seipel

The Spring Loaded Inverted Pendulum (SLIP) model was developed to describe center of mass movement patterns observed in animals, using only a springy leg and a point mass. However, SLIP is energy conserving and does not accurately represent any biological or robotic system. Still, this model is often used as a foundation for the investigation of improved legged locomotion models. One such model called Torque Damped SLIP (TD-SLIP) utilizes two additional parameters, a time dependent torque and dampening to drastically increase the stability. Forced Damped SLIP (FD-SLIP), a predecessor of TD-SLIP, has shown that this model can be further simplified by using a constant torque, instead of a time varying torque, while still maintaining stability. Using FD-SLIP as a base, this paper explores a leg placement strategy using a simple PI controller. The controller takes advantage of the fact that the energy state of FD-SLIP is symmetric entering and leaving the stance phase during steady state conditions. During the flight phase, the touch down leg angle is adjusted so that the energy dissipation due to dampening, during the stance phase, compensates for any imbalance of energy. This controller approximately doubles the region of stability when subjected to velocity perturbations at touchdown, enables the model to operate at considerably lower torque values, and drastically reduces the time required to recover from a perturbation, while using less energy. Finally, the leg placement strategy used effectively imitates the natural human response to velocity perturbations while running.


2005 ◽  
Vol 86 (11) ◽  
pp. 2189-2194 ◽  
Author(s):  
Bradford C. Bennett ◽  
Mark F. Abel ◽  
Adam Wolovick ◽  
Timothy Franklin ◽  
Paul E. Allaire ◽  
...  

1991 ◽  
Vol 156 (1) ◽  
pp. 215-231 ◽  
Author(s):  
R. J. Full ◽  
M. S. Tu

To examine the effects of variation in body form on the mechanics of terrestrial locomotion, we used a miniature force platform to measure the ground reaction forces of the smallest and, relative to its mass, one of the fastest invertebrates ever studied, the American cockroach Periplaneta americana (mass = 0.83 g). From 0.44-1.0 ms-1, P. americana used an alternating tripod stepping pattern. Fluctuations in gravitational potential energy and horizontal kinetic energy of the center of mass were nearly in phase, characteristic of a running or bouncing gait. Aerial phases were observed as vertical ground reaction force approached zero at speeds above 1 ms-1. At the highest speeds (1.0-1.5 ms-1 or 50 body lengths per second), P. americana switched to quadrupedal and bipedal running. Stride frequency approached the wing beat frequencies used during flight (27 Hz). High speeds were attained by increasing stride length, whereas stride frequency showed little increase with speed. The mechanical power used to accelerate the center of mass increased curvilinearly with speed. The mass-specific mechanical energy used to move the center of mass a given distance was similar to that measured for animals five orders of magnitude larger in mass, but was only one-hundredth of the metabolic cost.


1990 ◽  
Vol 148 (1) ◽  
pp. 129-146 ◽  
Author(s):  
R. J. Full ◽  
M. S. Tu

Six-legged pedestrians, cockroaches, use a running gait during locomotion. The gait was defined by measuring ground reaction forces and mechanical energy fluctuations of the center of mass in Blaberus discoidalis (Serville) as they travelled over a miniature force platform. These six-legged animals produce horizontal and vertical ground-reaction patterns of force similar to those found in two-, four- and eight-legged runners. Lateral forces were less than half the vertical force fluctuations. At speeds between 0.08 and 0.66 ms-1, horizontal kinetic and gravitational potential energy changes were in phase. This pattern of energy fluctuation characterizes the bouncing gaits used by other animals that run. Blaberus discoidalis attained a maximum sustainable stride frequency of 13 Hz at 0.35 ms-1, the same speed and frequency predicted for a mammal of the same mass. Despite differences in body form, the mass-specific energy used to move the center of mass a given distance (0.9 J kg-1m-1) was the same for cockroaches, ghost crabs, mammals, and birds. Similarities in force production, stride frequency and mechanical energy production during locomotion suggest that there may be common design constraints in terrestrial locomotion which scale with body mass and are relatively independent of body form, leg number and skeletal type.


2019 ◽  
Vol 14 (10) ◽  
pp. 1388-1394 ◽  
Author(s):  
Thomas A. Haugen ◽  
Felix Breitschädel ◽  
Stephen Seiler

Purpose: To quantify possible differences in sprint mechanical outputs in handball and basketball players according to playing standard and position. Methods: Sprint tests of 298 male players were analyzed. Theoretical maximal velocity (v0), horizontal force (F0), horizontal power (Pmax), force–velocity slope (SFV), ratio of force (RFmax), and index of force application technique (DRF) were calculated from anthropometric and spatiotemporal data using an inverse dynamic approach applied to the center-of-mass movement. Results: National-team handball players displayed clearly superior 10-m times (0.03, ±0.02 s), 40-m times (0.12, ±0.07 s), F0 (0.1, ±0.2 N·kg−1), v0 (0.3, ±0.2 m·s−1), and Pmax (0.9, ±0.5 W·kg−1) than corresponding top-division players. Wings differed from the other positions in terms of superior 10-m times (0.02, ±0.01 to 0.07, ±0.02 s), 40-m times (0.07, ±0.05 to 0.27, ±0.07 s), F0 (0.2, ±0.1 to 0.4, ±0.2 N·kg−1), v0 (0.1, ±0.1 to 0.5, ±0.1 m·s−1), Pmax (0.7, ±0.4 to 2.0, ±0.5 W·kg−1), and RFmax (0.6, ±0.4 to 1.3, ±0.4%). In basketball, guards differed from forwards in terms of superior 10-m times (0.03, ±0.02 s), 40-m times (0.10, ±0.08 s), v0 (0.2, ±0.1 m·s−1), Pmax (0.6, ±0.6 W·kg−1), and RFmax (0.4, ±0.3%). The effect magnitudes of the substantial differences observed ranged from small to large. Conclusions: The present results provide an overall picture of the force–velocity profile continuum in sprinting handball and basketball players and serve as useful background information for practitioners when diagnosing individual players and prescribing training programs.


2020 ◽  
Vol 2 ◽  
Author(s):  
Glenn Björklund ◽  
Mikael Swarén ◽  
Magnus Norman ◽  
Juan Alonso ◽  
Fredrik Johansson

2014 ◽  
Vol 30 (6) ◽  
pp. 679-684 ◽  
Author(s):  
Pablo Floria ◽  
Luis A. Gómez-Landero ◽  
Andrew J. Harrison

The purpose of this study was to determine if children exhibit greater variability in center of mass movement and kinetics compared with adults in vertical jumping. Countermovement jumps with arms (CMJA) and without arms (CMJ) performed by 20 female children and 20 female adults were examined using force platform. The data were analyzed using continuous methods to determine differences in variability between groups and between types of jump. Jumping variability was measured by using the average coefficient of variation of the force-, velocity-, displacement-, and rate of force development-time curves across the jump. The analysis indicated that children and adults had similar levels of variability in the CMJ but different levels in the CMJA. In the CMJA, the children had a greater coefficient of variation than adults in force- (20 ± 7% and 12 ± 6%), velocity- (41 ± 14% and 22 ± 9%), displacement- (8 ± 16% and 23 ± 11%) and rate of force development-time (103 ± 46% and 75 ± 42%) curves, as well as in force-velocity relationship (6 ± 2% and 4 ± 2%). The results of analysis suggest that the variability depends on both the level of maturation of the participants as well as the task complexity.


Sign in / Sign up

Export Citation Format

Share Document