Interferon regulatory factor-1 is necessary for a T helper 1 immune response in vivo

1997 ◽  
Vol 56 ◽  
pp. 84
Author(s):  
M. Lohoff ◽  
D. Ferrick ◽  
H.-W. Mitrücker ◽  
G.S. Duncan ◽  
G.S. Duncan ◽  
...  
Immunity ◽  
1997 ◽  
Vol 6 (6) ◽  
pp. 681-689 ◽  
Author(s):  
Michael Lohoff ◽  
David Ferrick ◽  
Hans-Willi Mittrücker ◽  
Gordon S Duncan ◽  
Susi Bischof ◽  
...  

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yamaguchi R ◽  
◽  
Sakamoto A ◽  
Haraguchi M ◽  
Narahara S ◽  
...  

The pathogenesis of pulmonary fibrosis remains unknown. However, bacterial infections in patients with idiopathic pulmonary fibrosis are a serious complication that exacerbate the disease. Serum levels of Surfactant Protein D (SPD) are known to be elevated in patients with pulmonary fibrosis, but the role of SPD in pulmonary fibrosis complicated with bacterial infection is unknown. Lipopolysaccharide upregulates Interleukin (IL)-12p40 expression and IL-12p40 promotes Interferon Gamma (IFNγ) production to induce the T helper cell 1 (Th1) immune response via Signal Transducers and Activators of Transcription 4 (STAT4) signaling. A lack of IFNγ shifts the immune response from Th1 to Th2. IL-4 is a profibrotic Th2 cytokine that activates fibroblasts. Granulocyte-macrophage colony-stimulating factor induced by IL-1 and TNFα during the Th1 immune response upregulates Signal Regulatory Protein α (SIRPα) expression. Interferon Regulatory Factor 1 (IRF1) functions as the promoter activator of IL-12p40 after stimulation with LPS. SPD is a ligand for SIRPα, and SPD/SIRPα ligation activates the Mitogen-Activated Protein Kinase (MAPK)/Extracellular Signal-Related Kinase (ERK) signal cascade; ERK downregulates Interferon Regulatory Factor 1 (IRF1) expression. Consequently, the SPD/SIRPα signaling pathway decreases IL-12p40 production in human macrophages after exposure to LPS. IL-12p40 is a key immunoregulatory factor in bacterial infection that promotes production of IFNγ by T lymphocytes. Pulmonary fibroblasts are activated by IL-4/IL-4R ligation. IFNγ induces IRF1 via STAT1 signaling, and IRF1 acts as the promoter repressor of IL-4 to attenuate its production. IFNγ also inhibits IL-4R expression. A reduction in IFNγ induced by IL-12p40 deficiency via the SPD/SIRPα signaling pathway enhances IL-4 and IL-4R expression to augment the activity of fibroblasts. This finding indicates that pulmonary fibrosis is exacerbated by SPD/SIRPα signaling during bacterial infection.


2017 ◽  
Vol 118 (1) ◽  
pp. 62-71 ◽  
Author(s):  
Mu-qing Yang ◽  
Qiang Du ◽  
Patrick R Varley ◽  
Julie Goswami ◽  
Zhihai Liang ◽  
...  

2017 ◽  
Vol 91 (22) ◽  
Author(s):  
Sharmila Nair ◽  
Subhajit Poddar ◽  
Raeann M. Shimak ◽  
Michael S. Diamond

ABSTRACT The innate immune system protects cells against viral pathogens in part through the autocrine and paracrine actions of alpha/beta interferon (IFN-α/β) (type I), IFN-γ (type II), and IFN-λ (type III). The transcription factor interferon regulatory factor 1 (IRF-1) has a demonstrated role in shaping innate and adaptive antiviral immunity by inducing the expression of IFN-stimulated genes (ISGs) and mediating signals downstream of IFN-γ. Although ectopic expression experiments have suggested an inhibitory function of IRF-1 against infection of alphaviruses in cell culture, its role in vivo remains unknown. Here, we infected Irf1 −/− mice with two distantly related arthritogenic alphaviruses, chikungunya virus (CHIKV) and Ross River virus (RRV), and assessed the early antiviral functions of IRF-1 prior to induction of adaptive B and T cell responses. IRF-1 expression limited CHIKV-induced foot swelling in joint-associated tissues and prevented dissemination of CHIKV and RRV at early time points. Virological and histological analyses revealed greater infection of muscle tissues in Irf1 −/− mice than in wild-type mice. The antiviral actions of IRF-1 appeared to be independent of the induction of type I IFN or the effects of type II and III IFNs but were associated with altered local proinflammatory cytokine and chemokine responses and differential infiltration of myeloid cell subsets. Collectively, our in vivo experiments suggest that IRF-1 restricts CHIKV and RRV infection in stromal cells, especially muscle cells, and that this controls local inflammation and joint-associated swelling. IMPORTANCE Interferon regulatory factor 1 (IRF-1) is a transcription factor that regulates the expression of a broad range of antiviral host defense genes. In this study, using Irf1 −/− mice, we investigated the role of IRF-1 in modulating pathogenesis of two related arthritogenic alphaviruses, chikungunya virus and Ross River virus. Our studies show that IRF-1 controlled alphavirus replication and swelling in joint-associated tissues within days of infection. Detailed histopathological and virological analyses revealed that IRF-1 preferentially restricted CHIKV infection in cells of nonhematopoietic lineage, including muscle cells. The antiviral actions of IRF-1 resulted in decreased local inflammatory responses in joint-associated tissues, which prevented immunopathology.


2016 ◽  
Vol 91 (1) ◽  
Author(s):  
Wadzanai P. Mboko ◽  
Michaela M. Rekow ◽  
Mitchell P. Ledwith ◽  
Philip T. Lange ◽  
Kaitlin E. Schmitz ◽  
...  

ABSTRACT Gammaherpesviruses are ubiquitous pathogens that establish lifelong infection in >95% of adults worldwide and are associated with a variety of malignancies. Coevolution of gammaherpesviruses with their hosts has resulted in an intricate relationship between the virus and the host immune system, and perturbation of the virus-host balance results in pathology. Interferon regulatory factor 1 (IRF-1) is a tumor suppressor that is also involved in the regulation of innate and adaptive immune responses. Here, we show that type I interferon (IFN) and IRF-1 cooperate to control acute gammaherpesvirus infection. Specifically, we demonstrate that a combination of IRF-1 and type I IFN signaling ensures host survival during acute gammaherpesvirus infection and supports IFN gamma-mediated suppression of viral replication. Thus, our studies reveal an intriguing cross talk between IRF-1 and type I and II IFNs in the induction of the antiviral state during acute gammaherpesvirus infection. IMPORTANCE Gammaherpesviruses establish chronic infection in a majority of adults, and this long-term infection is associated with virus-driven development of a range of malignancies. In contrast, a brief period of active gammaherpesvirus replication during acute infection of a naive host is subclinical in most individuals. Here, we discovered that a combination of type I interferon (IFN) signaling and interferon regulatory factor 1 (IRF-1) expression is required to ensure survival of a gammaherpesvirus-infected host past the first 8 days of infection. Specifically, both type I IFN receptor and IRF-1 expression potentiated antiviral effects of type II IFN to restrict gammaherpesvirus replication in vivo, in the lungs, and in vitro, in primary macrophage cultures.


1999 ◽  
Vol 67 (5) ◽  
pp. 2277-2283 ◽  
Author(s):  
Rosemary Sok-Pin Tan ◽  
Chiguang Feng ◽  
Yoshihiro Asano ◽  
Anna Ursula Kara

ABSTRACT Nitric oxide (NO) is a short-lived biological mediator which can be induced in various cell types and is able to cause many metabolic changes in target cells. Inhibition of tumor cell growth and antimicrobial activity has been attributed to the stimulation of NO production by transcriptional upregulation of inducible nitric oxide synthase. In the present study, we used mice devoid of functional interferon regulatory factor 1 by targeted gene disruption (IRF-1−/−) to investigate the role of NO in the host immune response against blood-stage Plasmodium berghei ANKA infection. IRF-1−/− mice survived longer with a later onset of and a lower peak parasitemia despite the inability to produce appreciable levels of NO. The administration of exogenous interleukin-12 (IL-12) was able to prolong survival in the wild-type mice with an upregulation in the expression of both gamma interferon (IFN-γ) and NO. However, the administration of IL-12 did not improve the survival of IRF-1−/− mice. These studies indicate that while IL-12 is able to mediate protection via an IFN-γ- and NO-dependent pathway in the wild-type mice, such a protective mechanism may not be functional in the IRF-1−/− mice. Our results suggest that NO may not be essential for host immunity to the parasite and that IRF-1−/− mice are able to induce an IFN-γ- and NO-independent mechanism against P. berghei infection.


Sign in / Sign up

Export Citation Format

Share Document