Expression and function of P-glycoprotein in natural killer (NK) cells during HIV infection

1997 ◽  
Vol 56 ◽  
pp. 383
Author(s):  
M.B. Lucia ◽  
W. Malomi ◽  
R. Cauda
2021 ◽  
Vol 12 ◽  
Author(s):  
Laura Kiekens ◽  
Wouter Van Loocke ◽  
Sylvie Taveirne ◽  
Sigrid Wahlen ◽  
Eva Persyn ◽  
...  

T-bet and Eomes are transcription factors that are known to be important in maturation and function of murine natural killer (NK) cells. Reduced T-BET and EOMES expression results in dysfunctional NK cells and failure to control tumor growth. In contrast to mice, the current knowledge on the role of T-BET and EOMES in human NK cells is rudimentary. Here, we ectopically expressed either T-BET or EOMES in human hematopoietic progenitor cells. Combined transcriptome, chromatin accessibility and protein expression analyses revealed that T-BET or EOMES epigenetically represses hematopoietic stem cell quiescence and non-NK lineage differentiation genes, while activating an NK cell-specific transcriptome and thereby drastically accelerating NK cell differentiation. In this model, the effects of T-BET and EOMES are largely overlapping, yet EOMES shows a superior role in early NK cell maturation and induces faster NK receptor and enhanced CD16 expression. T-BET particularly controls transcription of terminal maturation markers and epigenetically controls strong induction of KIR expression. Finally, NK cells generated upon T-BET or EOMES overexpression display improved functionality, including increased IFN-γ production and killing, and especially EOMES overexpression NK cells have enhanced antibody-dependent cellular cytotoxicity. Our findings reveal novel insights on the regulatory role of T-BET and EOMES in human NK cell maturation and function, which is essential to further understand human NK cell biology and to optimize adoptive NK cell therapies.


2015 ◽  
Vol 89 (10) ◽  
pp. 5213-5221 ◽  
Author(s):  
Geraldine M. O'Connor ◽  
Julian P. Vivian ◽  
Emma Gostick ◽  
Phillip Pymm ◽  
Bernard A. P. Lafont ◽  
...  

ABSTRACTKiller cell immunoglobulin-like receptors (KIRs) play an important role in the activation of natural killer (NK) cells, which in turn contribute to the effective immune control of many viral infections. In the context of HIV infection, the closely related KIR3DL1 and KIR3DS1 molecules, in particular, have been associated with disease outcome. Inhibitory signals via KIR3DL1 are disrupted by downregulation of HLA class I ligands on the infected cell surface and can also be impacted by changes in the presented peptide repertoire. In contrast, the activatory ligands for KIR3DS1 remain obscure. We used a structure-driven approach to define the characteristics of HLA class I-restricted peptides that interact with KIR3DL1 and KIR3DS1. In the case of HLA-B*57:01, we used this knowledge to identify bona fide HIV-derived peptide epitopes with similar properties. Two such peptides facilitated productive interactions between HLA-B*57:01 and KIR3DS1. These data reveal the presence of KIR3DS1 ligands within the HIV-specific peptide repertoire presented by a protective HLA class I allotype, thereby enhancing our mechanistic understanding of the processes that enable NK cells to impact disease outcome.IMPORTANCENatural killer (NK) cells are implicated as determinants of immune control in many viral infections, but the precise molecular mechanisms that initiate and control these responses are unclear. The activating receptor KIR3DS1 in combination with HLA-Bw4 has been associated with better outcomes in HIV infection. However, evidence of a direct interaction between these molecules is lacking. In this study, we demonstrate that KIR3DS1 recognition of HLA-Bw4 is peptide dependent. We also identify HIV-derived peptide epitopes presented by the protective HLA-B*57:01 allotype that facilitate productive interactions with KIR3DS1. Collectively, these findings suggest a mechanism whereby changes in the peptide repertoire associated with viral infection provide a trigger for KIR3DS1 engagement and NK cell activation.


Viruses ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 239 ◽  
Author(s):  
Emilie M. Comeau ◽  
Kayla A. Holder ◽  
Neva J. Fudge ◽  
Michael D. Grant

Expansion of natural killer (NK) cells expressing NKG2C occurs following human cytomegalovirus (HCMV) infection and is amplified by human immunodeficiency virus (HIV) co-infection. These NKG2C-expressing NK cells demonstrate enhanced CD16-dependent cytokine production and downregulate FcεRIγ and promyelocytic leukemia zinc finger protein (PLZF). Lacking NKG2C diminishes resistance to HIV infection, but whether this affects NK cell acquisition of superior antibody-dependent function is unclear. Therefore, our objective was to investigate whether HCMV-driven NK cell differentiation is impaired in NKG2Cnull HIV-infected individuals. Phenotypic (CD2, CD16, CD57, NKG2A, FcεRIγ, and PLZF expression) and functional (cytokine induction and cytotoxicity) properties were compared between HIV–infected NKG2Cnull and NKG2C-expressing groups. Cytokine production was compared following stimulation through natural cytotoxicity receptors or through CD16. Cytotoxicity was measured by anti-CD16-redirected lysis and by classical antibody-dependent cell-mediated cytotoxicity (ADCC) against anti-class I human leukocyte antigen (HLA) antibody-coated cells. Our data indicate highly similar HCMV-driven NK cell differentiation in HIV infection with or without NKG2C. While the fraction of mature (CD57pos) NK cells expressing CD2 (p = 0.009) or co-expressing CD2 and CD16 (p = 0.03) was significantly higher in NKG2Cnull HIV-infected individuals, there were no significant differences in NKG2A, FcεRIγ, or PLZF expression. The general phenotypic and functional equivalency observed suggests NKG2C-independent routes of HCMV-driven NK cell differentiation, which may involve increased CD2 expression.


2006 ◽  
Vol 203 (10) ◽  
pp. 2339-2350 ◽  
Author(s):  
Domenico Mavilio ◽  
Gabriella Lombardo ◽  
Audrey Kinter ◽  
Manuela Fogli ◽  
Andrea La Sala ◽  
...  

In this study, we demonstrate that the in vitro interactions between a CD56neg/CD16pos (CD56neg) subset of natural killer (NK) cells and autologous dendritic cells (DCs) from HIV-1–infected viremic but not aviremic individuals are markedly impaired and likely interfere with the development of an effective immune response. Among the defective interactions are abnormalities in the process of reciprocal NK–DC activation and maturation as well as a defect in the NK cell–mediated editing or elimination of immature DCs (iDCs). Notably, the lysis of mature DCs (mDCs) by autologous NK cells was highly impaired even after the complete masking of major histocompatibility complex I molecules, suggesting that the defective elimination of autologous iDCs is at the level of activating NK cell receptors. In this regard, the markedly impaired expression/secretion and function of NKp30 and TNF-related apoptosis-inducing ligand, particularly among the CD56neg NK cell subset, largely accounts for the highly defective NK cell–mediated lysis of autologous iDCs. Moreover, mDCs generated from HIV-1 viremic but not aviremic patients are substantially impaired in their ability to secrete interleukin (IL)-10 and -12 and to prime the proliferation of neighboring autologous NK cells, which, in turn, fail to secrete adequate amounts of interferon-γ.


2014 ◽  
Vol 150 (2) ◽  
pp. 210-219 ◽  
Author(s):  
Alfred Bere ◽  
Shahila Tayib ◽  
Jean-Mari Kriek ◽  
Lindi Masson ◽  
Shameem Z. Jaumdally ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (4) ◽  
pp. 1207-1214 ◽  
Author(s):  
Jeffrey Ward ◽  
Matthew Bonaparte ◽  
Jennifer Sacks ◽  
Jacqueline Guterman ◽  
Manuela Fogli ◽  
...  

AbstractThe ability of natural killer (NK) cells to kill virus-infected cells depends on the presence of ligands for activation receptors on the target cells. We found the presence of few, if any, NKp30 and NK46 ligands on T cell blasts infected with HIV, although NKp44 ligands were found on infected cells. HIV does induce the NKG2D ligands ULBP-1, -2, and -3. These ligands are involved in triggering NK cells to kill autologous HIV-infected cells, because interfering with the interaction between NKG2D, but not NKp46, on NK cells and its ligands on HIV-infected cells drastically reduced the lysis of infected cells. Interfering with the binding of the NK-cell coreceptors NTB-A and 2B4 to their ligands also decreased destruction by NK cells. The coreceptor ligands, NTB-A and CD48, were also found to be down-regulated during the course of HIV infection. Thus, ligands for NK-cell receptors are modulated during the course of HIV infection, which may greatly alter NK cells' ability to kill the infected cells.


Sign in / Sign up

Export Citation Format

Share Document