Waste Materials from the Power Industry as Potential Fuel for Fluidized Bed Boilers

Author(s):  
E.M. Bulewicz ◽  
C. Jurys ◽  
S. Kandefer
2016 ◽  
Vol 32 (3) ◽  
pp. 149-162 ◽  
Author(s):  
Alicja Uliasz-Bocheńczyk ◽  
Aleksandra Pawluk ◽  
Michał Pyzalski

AbstractWhen it comes to the production of energy from renewable sources, biomass is the main fuel, burned directly or co-fired with coal, used in the professional power industry. As in the case of coal, the use of biomass in the professional power industry is accompanied by the generation of by-products of the combustion process, primarily in the form of fly ash. These wastes significantly differ from those resulting from coal combustion. Their properties depend primarily on the burned biomass and boiler type. Due to the growing pressure on the use of energy from renewable sources resulting from the Energy Policy of Poland and the requirements imposed by the EU, more and more by-products are produced. Ashes from the co-firing of biomass are relatively well studied, especially when it comes to those resulting from the combustion in conventional boilers. The by-products of biomass combustion are of limited economic use due to their specific characteristics. The ashes resulting from the combustion in fluidized bed boilers are particularly problematic. The paper presents the research results on the basic properties of the three ashes generated from the combustion of biomass in fluidized bed boilers and one ash resulting from the co-firing of biomass with coal in pulverized coal boiler for the same biofuel type. The conducted analysis of the chemical composition has shown a high content of CaO and CaOw, SO3, and K2O and a low content of SiO2and Al2O3compared to ash from co-combustion of biomass. The elemental analysis indicates a high content of: P, S, Cl, K, and Ca and lower content of chromium and cobalt in the ashes generated from burning of biomass when compared with the ashes produced as a result of co-combustion. All the tested ashes have similar granulometric composition. Particular attention was paid to the leachability of pollutants, which is one of the most important factors determining the use of waste in mining technologies, using mainly the mixtures of fly ash and solid waste from calcium-based flue gas desulphurization (10 01 82). The pH of leachates from the analyzed ashes is the lowest for the ashes resulting from the co-combustion of biomass. The pH value of leachates was approximately 12 for all of the tested samples. The results have shown a high leachability of potassium and chlorides, which is characteristic for by-products resulting from the combustion of biomass, and a high leachability of sulphates due to the type of used boilers. The phase composition is dominated by calcium and potassium carbonates, quartz, K2SO4, halite, sylvite, CaO, MgO.


2015 ◽  
Vol 14 (4) ◽  
pp. 164-172 ◽  
Author(s):  
Jacek M. Łączny ◽  
Sebastian Iwaszenko ◽  
Krzysztof Gogola ◽  
Andrzej Bajerski ◽  
Tomasz Janoszek ◽  
...  

2020 ◽  
Vol 24 (5 Part A) ◽  
pp. 2665-2675
Author(s):  
Songsong Zhang ◽  
Qian Du ◽  
Guoli Qi

Particle size distributions, concentrations, morphological characteristics, and elemental compositions of eight fluidized bed boilers with different capacities and different dust collectors were determined experimentally. The PM2.5 particle concentration and mass concentration were monitored in real-time before and after the boiler dust collector by electric low pressure impactor, and the physical and chemical properties of PM2.5 were analyzed by membrane sampling. We found that the PM2.5 particle concentration produced by industrial fluidized bed boilers displayed bimodal distributions, peaking at 0.2 ?m and 0.76 ?m, the formed mechanism of these two parts particles is vaporization-condensation of mineral matter and residual ash particles and the adsorbent wear or tear. Mass concentration exhibits a single peak characteristic with a peak at 0.12 ?m. The removal efficiency for PM2.5 of dust collectors varies with different dust removal mechanisms. The electrostatic precipitator and bag filter have high dust removal efficiency, and the water film dust collector has low dust removal efficiency. The normal operation of the bag filter has a great influence on the dust removal efficiency. The physical and chemical properties of PM2.5 showed that the single-particle morphology was mainly composed of irregular particles, containing a small amount of solid spherical particles and more agglomerates. The content of Si and Al in PM2.5 elemental analysis is the highest, which decreases after a dust collector. Some fluidized bed boilers use desulfurization in the furnace, which has great influence on the mass concentration of Ca and S elements, and the lowest Hg content in trace elements, about a few ppm. <br><br><font color="red"><b> This article has been corrected. Link to the correction <u><a href="http://dx.doi.org/10.2298/TSCI200901242E">10.2298/TSCI200901242E</a><u></b></font>


2004 ◽  
Vol 8 (2) ◽  
pp. 107-126 ◽  
Author(s):  
Jaakko Saastamoinen

New process concepts in energy production and biofuel, which are much more reactive than coal, call for better controllability of the combustion in circulating fluidized bed boilers. Simplified analysis describing the dynamics of combustion in fluidized bed and circulating fluidized bed boilers is presented. Simple formulas for the estimation of the responses of the burning rate and fuel inventory to changes in fuel feeding are presented. Different changes in the fuel feed, such as an impulse, step change, linear increase and cyclic variation are considered. The dynamics of the burning with a change in the feed rate depends on the fuel reactivity and particle size. The response of a fuel mixture with a wide particle size distribution can be found by summing up the effect of different fuel components and size fractions. Methods to extract reaction parameters form dynamic tests in laboratory scale reactors are discussed. The residence time of fuel particles in the bed and the resulting char inventory in the bed decrease with increasing fuel reactivity and differences between coal and biomass is studied. The char inventory affects the stability of combustion. The effect of char inventory and oscillations in the fuel feed on the oscillation of the flue gas oxygen concentration is studied by model calculation. A trend found by earlier measurements is explained by the model.


2021 ◽  
Vol 14 (4) ◽  
Author(s):  
Jacek M. Łączny ◽  
Sebastian Iwaszenko ◽  
Krzysztof Gogola ◽  
Andrzej Bajerski ◽  
Tomasz Janoszek ◽  
...  

2020 ◽  
Vol 24 (6 Part A) ◽  
pp. 3859-3859
Author(s):  
E Editorial

Requests that it is necessary to clearly define names of two Corresponding authors of the paper EXPERIMENTAL STUDY ON PRODUCTION AND EMISSION CHARACTERISTICS OF PM2.5 FROM INDUSTRIAL FLUIDIZED BED BOILERS by Songsong ZHANGa, Qian DUb* , and Guoli QIa <br><br><font color="red"><b> Link to the corrected article <u><a href="http://dx.doi.org/10.2298/TSCI190828001Z">10.2298/TSCI190828001Z</a></b></u>


Author(s):  
U. Kortela ◽  
J.P. Pyykkö ◽  
M.A. Tuovinen ◽  
S. Holm

Sign in / Sign up

Export Citation Format

Share Document