In-situ monitoring of electron beam induced deposition by atomic force microscopy in a scanning electron microscope

2003 ◽  
Vol 67-68 ◽  
pp. 963-969 ◽  
Author(s):  
S. Bauerdick ◽  
C. Burkhardt ◽  
R. Rudorf ◽  
W. Barth ◽  
V. Bucher ◽  
...  
Nanoscale ◽  
2017 ◽  
Vol 9 (42) ◽  
pp. 16349-16356 ◽  
Author(s):  
Brett B. Lewis ◽  
Brittnee A. Mound ◽  
Bernadeta Srijanto ◽  
Jason D. Fowlkes ◽  
George M. Pharr ◽  
...  

Nanomechanical measurements of platinum–carbon 3D nanoscale architectures grown via focused electron beam induced deposition (FEBID) were performed using a nanoindentation system in a scanning electron microscope (SEM) for simultaneous in situ imaging.


2013 ◽  
Vol 832 ◽  
pp. 419-422 ◽  
Author(s):  
Mohammad Nuzaihan Md Nor ◽  
Uda Hashim ◽  
Siti Fatimah Abdul Rahman ◽  
Tijjani Adam

In this work, we report the used of Negative Pattern Scheme (NPS) by Electron Microscope Based Electron Beam Lithography (EBL) Technique in connection with scanning electron microscope (SEM) for creating extremely fine nanowires. These patterns have been designed using GDSII Editor and directly transferred on the sample coated with ma-N 2400 Series as the negative tone e-beam resist. The NPS designs having line width of approximately 100 nm are successfully fabricated at our lab. The profile of the nanowire can be precisely controlled by this technique. The optical characterization that is applied to check the nanowires structure using SEM and Atomic Force Microscopy (AFM).


2022 ◽  
Author(s):  
Sanjeev Kumar Kanth ◽  
Anjli Sharma ◽  
Byong Chon Park ◽  
Woon Song ◽  
Hyun Rhu ◽  
...  

Abstract We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion x, y and z and one-dimensional rotational motion θ. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0º as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.


Nanoscale ◽  
2011 ◽  
Vol 3 (6) ◽  
pp. 2481 ◽  
Author(s):  
Na Wu ◽  
Xingfei Zhou ◽  
Daniel M. Czajkowsky ◽  
Ming Ye ◽  
Dongdong Zeng ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (24) ◽  
pp. 11550-11561 ◽  
Author(s):  
Sarah K. Lami ◽  
Gabriel Smith ◽  
Eric Cao ◽  
J. Todd Hastings

Well-controlled, focused electron-beam induced etching of copper thin films has been successfully conducted on bulk substrates in an environmental scanning electron microscope by controlling liquid-film thickness with an in situ correlative interferometry system.


Sign in / Sign up

Export Citation Format

Share Document