Pulsed-field gel electrophoresis (PFGE) typing of Listeria strains isolated from a meat processing plant over a 2-year period

2000 ◽  
Vol 62 (1-2) ◽  
pp. 155-159 ◽  
Author(s):  
D Senczek ◽  
R Stephan ◽  
F Untermann
1999 ◽  
Vol 65 (1) ◽  
pp. 150-155 ◽  
Author(s):  
Tiina Autio ◽  
Sebastian Hielm ◽  
Maria Miettinen ◽  
Anna-Maija Sjöberg ◽  
Kaarina Aarnisalo ◽  
...  

ABSTRACT Sites of Listeria monocytogenes contamination in a cold-smoked rainbow trout (Oncorhynchus mykiss) processing plant were detected by sampling the production line, environment, and fish at different production stages. Two lots were monitored. The frequency of raw fish samples containing L. monocytogenes was low. During processing, the frequency of fish contaminated with L. monocytogenes clearly rose after brining, and the most contaminated sites of the processing plant were the brining and postbrining areas. A total of 303 isolates from the raw fish, product, and the environment were characterized by pulsed-field gel electrophoresis (PFGE). PFGE yielded nine pulsotypes, which formed four clusters. The predominating L. monocytogenespulsotypes of the final product were associated with brining and slicing, whereas contaminants of raw fish were not detected in the final product. Air-mediated contamination in the plant could not be proved. In accordance with these results, an L. monocytogenes eradication program was planned. The use of hot steam, hot air, and hot water seemed to be useful in eliminatingL. monocytogenes. None of the control samples taken in the 5 months after the eradication program was implemented containedL. monocytogenes.


2001 ◽  
Vol 64 (7) ◽  
pp. 994-999 ◽  
Author(s):  
MARIA K. MIETTINEN ◽  
LIISA PALMU ◽  
K. JOHANNA BJÖRKROTH ◽  
HANNU KORKEALA

The environment and products from two broiler abattoirs and processing plants and raw broiler pieces at the retail level were sampled for Listeria monocytogenes in order to evaluate the contamination level of the broiler carcasses and products. Sampling started in the slaughtering process and finished with raw broiler meat or ready-to-eat cooked product. Sampling sites positive for L. monocytogenes at the broiler abattoir were the air chiller, the skin-removing machine, and the conveyor belt leading to the packaging area. The L. monocytogenes contamination rate varied from 1 to 19% between the two plants studied. Furthermore, 62% (38 of 61) of the raw broiler pieces, bought from retail stores, were positive for L. monocytogenes. Altogether, 136 L. monocytogenes isolates were obtained for serotyping and pulsed-field gel electrophoresis(PFGE) characterization performed with two rare-cutting enzymes (ApaI and AscI). Altogether three serotypes (1/2a, 1/2c, and 4b) and 14 different PFGE types were obtained using information provided from both ApaI and AscI patterns for discrimination basis. The two broiler abattoirs studied did not share the same PFGE types. However, the same PFGE types found in the raw broiler pieces at the retail level were also found in the broiler abattoirs where the broilers had been slaughtered.


2015 ◽  
Vol 78 (12) ◽  
pp. 2170-2176 ◽  
Author(s):  
J. J. PADILLA-FRAUSTO ◽  
L. G. CEPEDA-MARQUEZ ◽  
L. M. SALGADO ◽  
M. H. ITURRIAGA ◽  
S. M. ARVIZU-MEDRANO

Some Leuconostoc spp. have the ability to produce slime and undesirable compounds in cooked sausage. The objectives of this research were to identify Leuconostoc sources in a Vienna-type sausage processing plant and to evaluate the genetic diversity of the isolated strains. Three hundred and two samples of sausage batter, sausages during processing, spoiled sausage, equipment surfaces, chilling brine, workers' gloves and aprons, and used casings were collected (March to November 2008 and February to April 2010) from a sausage processing plant. Lactic acid bacteria (LAB) were quantified, and Leuconostoc were detected using PCR. Strains were isolated and identified in Leuconostoc-positive samples. Leuconostoc strains were genotyped using randomly amplified polymorphic DNA and pulsed-field gel electrophoresis. LAB content of nonspoiled and spoiled sausage ranged from <0.8 to 4.4 log CFU/g and from 4.9 to 8.3 log CFU/g, respectively. LAB levels on equipment surfaces ranged from <1.3 to 4.8 log CFU/100 cm2. Leuconostoc was detected in 35% of the samples, and 88 Leuconostoc spp. strains were isolated and genotyped. The main Leuconostoc spp. isolated were L. mesenteroides (37 genotypes), L. fallax (29 genotypes), and L. lactis (6 genotypes). Some strains of Leuconostoc isolated from equipment surfaces and sausages showed the same genotype. One L. lactis genotype included strains isolated from spoiled sausages analyzed in April 2008 and March to April 2010. Equipment and conveyor belts constitute Leuconostoc contamination sources. Leuconostoc persistence in the sausage processing environment and in the final product suggests the existence of microbial reservoirs, possibly on equipment surfaces.


1998 ◽  
Vol 64 (11) ◽  
pp. 4161-4167 ◽  
Author(s):  
Sebastian Hielm ◽  
Johanna Björkroth ◽  
Eija Hyytiä ◽  
Hannu Korkeala

ABSTRACT The distribution of Clostridium botulinum serotypes A, B, E, and F in Finnish trout farms was examined. A total of 333 samples were tested with a neurotoxin-specific PCR assay. C. botulinum type E was found in 68% of the farm sediment samples, in 15% of the fish intestinal samples, and in 5% of the fish skin samples. No other serotypes were found. The spore counts determined by the most-probable-number method were considerably higher for the sediments than for the fish intestines and skin; the average values were 2,020, 166, and 310 C. botulinum type E spores kg−1, respectively. The contamination rates in traditional freshwater ponds and marine net cages were high, but in concrete ponds equipped with sediment suction devices the contamination rates were significantly lower. Pulsed-field gel electrophoresis (PFGE) typing of 42 isolates obtained in this survey and 12 North American reference strains generated 28 pulsotypes upon visual inspection, suggesting that there was extensive genetic diversity and that the discriminatory power of PFGE typing in C. botulinum type E was high. A numerical analysis of SmaI-XmaI macrorestriction profiles confirmed these findings, as it divided the 54 isolates into 15 clusters at a similarity level of 76%. For this material, this level of similarity corresponded to a three-band difference in the macrorestriction profiles, which indicated that there is no genotypic proof of a close epidemiological relationship among the clusters.


1999 ◽  
Vol 37 (7) ◽  
pp. 2142-2147 ◽  
Author(s):  
Mitsumasa Saito ◽  
Akiko Umeda ◽  
Shin-ichi Yoshida

A total of 200 isolates of Haemophilus influenzae were analyzed by serotyping, biotyping, and pulsed-field gel electrophoresis (PFGE). A total of 178 epidemiologically unrelated strains of H. influenzae demonstrated a variety of genome patterns by PFGE, and 165 genotypes were thus obtained in this study. PFGE typing proved to have a much stronger discriminatory power than either serotyping or biotyping. Six serotype b strains were all classified into discrete genotypes. A PFGE analysis of 18 strains obtained from the nasopharynx, blood, and cerebrospinal fluid of patients with meningitis also supported the hypothesis that invasive H. influenzaedisseminates from the nasopharynx to the bloodstream and then subsequently to other body sites. PFGE typing of 10 other strains isolated from household contacts of patients with H. influenzae infection revealed that the strain that caused theH. influenzae infection often colonized the nasopharynges of household contacts. Our findings suggest that PFGE analysis is useful for the epidemiological study of H. influenzaeinfection, even when the invasive disease is caused by serotype b strains.


2008 ◽  
Vol 71 (9) ◽  
pp. 1752-1760 ◽  
Author(s):  
TERRANCE M. ARTHUR ◽  
JOSEPH M. BOSILEVAC ◽  
DAYNA M. BRICHTA-HARHAY ◽  
NORASAK KALCHAYANAND ◽  
DAVID A. KING ◽  
...  

Transportation from the feedlot and lairage at the processing plant have been identified as potential sources of Escherichia coli O157:H7 and Salmonella hide contamination. The objective of this study was to perform a comprehensive tracking analysis of E. coli O157:H7 and Salmonella associated with beef cattle from the feedlot through processing. Cattle (n = 581) were sampled in a feedlot, then transported in multiple lots to three commercial, fed beef processing plants in the United States, where they were sampled again. Samples were collected from the tractor trailers prior to loading cattle and from the lairage environment spaces prior to entry of the study cattle. Pathogen prevalence on cattle hides increased on every lot of cattle between exiting the feedlot and beginning processing. Prior to loading cattle, E. coli O157:H7 was found in 9 (64%) of 14 tractor trailers. E. coli O157:H7 was detected in over 60% of the samples from each lairage environment area, while Salmonella was detected in over 70% of the samples from each lairage environment area. E. coli O157:H7 and Salmonella isolates (n 3,645) were analyzed using pulsed-field gel electrophoresis. The results of the pulsed-field gel electrophoresis tracking indicate that the transfer of bacteria onto cattle hides that occurs in the lairage environments of U.S beef processing plants accounts for a larger proportion of the hide and carcass contamination than does the initial bacterial population found on the cattle exiting the feedlot. Finally, the results of this study indicate that hide wash cabinets are effective in removing contamination derived from the lairage environment.


2003 ◽  
Vol 66 (8) ◽  
pp. 1465-1468 ◽  
Author(s):  
ANNA C. S. PORTO ◽  
LAURA WONDERLING ◽  
JEFFREY E. CALL ◽  
JOHN B. LUCHANSKY

In a previous study, the viability of a five-strain mixture of Listeria monocytogenes (including Scott A [serotype 4b, clinical isolate], 101M [serotype 4b, beef-pork sausage isolate], F6854 [serotype 1/2a, turkey frankfurter isolate], H7776 [serotype 4b, frankfurter isolate], and MFS-2 [serotype 1/2a, pork plant isolate]) was monitored during refrigerated storage of frankfurters prepared with and without 3.0% added potassium lactate. Throughout a 90-day period of storage at 4°C, the initial inoculum level of 20 CFU per package remained relatively constant in packages containing frankfurters prepared with potassium lactate, but pathogen counts increased to 4.6 log10 CFU in packages containing frankfurters prepared without added potassium lactate. To determine which of the five strains persisted under these conditions, randomly selected colonies obtained after 28 and 90 days of refrigerated storage of frankfurters were analyzed by pulsed-field gel electrophoresis (PFGE) with the restriction enzyme SmaI to generate distinct banding patterns for each of the five strains. Then, with the use of PFGE as a tool for identification, the percentages of the strains on days 28 and 90 of the growth study were compared. In the absence of any added potassium lactate in the product, 43% of the 58 isolates recovered on day 28 were identified as strain Scott A, 12% were identified as strain 101M, 22% were identified as strain F6854, 10% were identified as strain H7776, and 12% were identified as strain MFS-2. However, by day 90, an appreciable number (83%) of the 60 isolates analyzed were identified as strain MFS-2. In packages containing frankfurters formulated with 3.0% potassium lactate, all five strains were present at frequencies of 5 to 36% among the 19 isolates tested on day 28; however, by day 90, strain MFS-2 made up the statistical majority (63%) of the 27 isolates tested. The results of this study indicate that strain MFS-2, a serotype 1/2a isolate recovered from a pork processing plant, was more persistent than strains Scott A, 101M, F6854, or H7776 during the extended refrigerated storage of frankfurters.


Sign in / Sign up

Export Citation Format

Share Document