Atenolol gastrointestinal therapeutic system: optimization of formulation variables using response surface methodology

1997 ◽  
Vol 45 (2) ◽  
pp. 121-130 ◽  
Author(s):  
Srikonda V. Sastry ◽  
Indra K. Reddy ◽  
Mansoor A. Khan
2018 ◽  
Vol 77 (6) ◽  
pp. 1765-1776 ◽  
Author(s):  
Gagik Badalians Gholikandi ◽  
Khashayar Kazemirad

Abstract In this study, the performance of the electrochemical peroxidation (ECP) process for removing the volatile suspended solids (VSS) content of waste-activated sludge was evaluated. The Fe2+ ions required by the process were obtained directly from iron electrodes in the system. The performance of the ECP process was investigated in various operational conditions employing a laboratory-scale pilot setup and optimized by response surface methodology (RSM). According to the results, the ECP process showed its best performance when the pH value, current density, H2O2 concentration and the retention time were 3, 3.2 mA/cm2, 1,535 mg/L and 240 min, respectively. In these conditions, the introduced Fe2+ concentration was approximately 500 (mg/L) and the VSS removal efficiency about 74%. Moreover, the results of the microbial characteristics of the raw and the stabilized sludge demonstrated that the ECP process is able to remove close to 99.9% of the coliforms in the raw sludge during the stabilization process. The energy consumption evaluation showed that the required energy of the ECP reactor (about 1.8–2.5 kWh (kg VSS removed)−1) is considerably lower than for aerobic digestion, the conventional waste-activated sludge stabilization method (about 2–3 kWh (kg VSS removed)−1). The RSM optimization process showed that the best operational conditions of the ECP process comply with the experimental results, and the actual and the predicted results are in good conformity with each other. This feature makes it possible to predict the introduced Fe2+ concentrations into the system and the VSS removal efficiency of the process precisely.


Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 741
Author(s):  
Bisi Olaniyan ◽  
Basudeb Saha

In this paper, a statistical analysis with response surface methodology (RSM) has been used to investigate and optimize process variables for the greener synthesis of chloromethyl ethylene carbonate (CMEC) by carbon dioxide (CO2) and epichlorohydrin (ECH). Using the design expert software, a quadratic model was developed to study the interactions effect between four independent variables and the reaction responses. The adequacy of the model was validated by correlation between the experimental and predicted values of the responses using an analysis of variance (ANOVA) method. The proposed Box-Behnken design (BBD) method suggested 29 runs for data acquisition and modelling the response surface. The optimum reaction conditions of 353 K, 11 bar CO2 pressure, and 12 h using fresh 12% (w/w) Zr/ZIF-8 catalyst loading produced 93% conversion of ECH and 68% yield of CMEC. It was concluded that the predicted and experimental values are in excellent agreement with ±1.55% and ±1.54% relative errors from experimental results for both the conversion of ECH and CMEC yield, respectively. Therefore, statistical modelling using RSM can be used as a reliable prediction technique for system optimization for greener synthesis of chloromethyl ethylene carbonate via CO2 utilization.


Sign in / Sign up

Export Citation Format

Share Document