Optimization of an rf ion source for production of a high-energy ion microbeam

Author(s):  
A. Kalinichenko ◽  
V. Khomenko ◽  
S. Lebed' ◽  
S. Mordik ◽  
V. Voznij
Keyword(s):  
2017 ◽  
Vol 743 ◽  
pp. 112-117
Author(s):  
Alexander Zolkin ◽  
Anna Semerikova ◽  
Sergey Chepkasov ◽  
Maksim Khomyakov

In the present study, the Raman spectra of diamond-like amorphous (a-C) and hydrogenated amorphous (a-C:H) carbon films on silicon obtained using the ion-beam methods and the pulse cathodic arc deposition technique were investigated with the aim of elucidating the relation between the hardness and structure of the films. The hardness of the samples used in the present study was 19 – 45 GPa. Hydrogenated carbon films were synthesized using END–Hall ion sources and a linear anode layer ion source (LIS) on single-crystal silicon substrates. The gas precursors were CH4 and C3H8, and the rate of the gas flow fed into the ion source was 4.4 to 10 sccm. The ion energies ranged from 150 to 600 eV. a-C films were deposited onto Si substrates using the pulse cathodic arc deposition technique. The films obtained by the pulse arc technique contained elements with an ordered structure. In the films synthesized using low- (150 eV) and high-energy (600 eV) ions beams, an amorphous phase was the major phase. The significant blurriness of the diffraction rings in the electron diffraction patterns due to a large film thickness (180 – 250 nm) did not allow distinctly observing the signals from the elements with an ordered structure against the background of an amorphous phase.


2014 ◽  
Vol 65 (8) ◽  
pp. 1273-1276 ◽  
Author(s):  
Doo-Hee Chang ◽  
Min Park ◽  
Seung Ho Jeong ◽  
Tae-Seong Kim ◽  
Kwang Won Lee ◽  
...  

1985 ◽  
Vol 18 (2) ◽  
pp. 169-176
Author(s):  
C Moreau ◽  
C Rioux ◽  
R J Slobodrian
Keyword(s):  

1993 ◽  
Vol 316 ◽  
Author(s):  
M. A. Otooni ◽  
A. Graf ◽  
C. Dunham ◽  
Ian Brown ◽  
Xiang Yao

ABSTRACTCopper and aluminum used for rail and armature materials in electromagnetic railgun systems undergo severe degradation during the EM gun operation. The extent of this degradation is especially severe in guns operated at high energy levels or designed for repeated firings. In an effort to improve surface properties of the copper rail, armature, and sabot materials, the technique of metal ion implantation using a vacuum arc ion source has been employed. Preliminary tests have been conducted to identify the best implant species to improve spark erosion resistance, scratch resistance and hardness. The implanted species included Al, Ti, Cr, Ni, Ta, Ag, and W. The implantation energy range and dose varied between 100–180 KeV and 0.4 to 2 × 1017 cm-2, respectively . Several analytical techniques were also used to assess the effect of implanted species. These included Rutherford Back Scattering (RBS), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Microhardness Measurements, Spark Erosion and Scratch Testing. It has been tentatively concluded that Ta and Ni implantation of the copper rail substantially improve wear and inhibit arc erosion. There is also sufficient evidence to indicate that implantation of the aluminum armature with Cr and Ta, involving two stages of implantation, will also improve its mechanical and wear properties.


2019 ◽  
Vol 2019 (11) ◽  
Author(s):  
T Sonoda ◽  
I Katayama ◽  
M Wada ◽  
H Iimura ◽  
V Sonnenschein ◽  
...  

Abstract An in-flight separator performs the important role of separating a single specific radioactive isotope (RI) beam from the thousands of RI beams produced by in-flight fission as well as projectile fragmentation. However, when looking at ``separation'' from a different viewpoint, more than 99% of simultaneously produced RI beams are just eliminated in the focal plane slits or elsewhere in the separator. In order to enhance the effective usability of the RIKEN in-flight separator BigRIPS, we have been developing an innovative method: parasitic laser ion source (PALIS), which implements parasitic low-energy RI beam production by saving eliminated RI beams during BigRIPS experiments. In this paper, we present the expected benefits and feasibility for the PALIS concept and the results of the first stopping examination for high-energy RI beams in the gas cell.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
K. Weichman ◽  
J. J. Santos ◽  
S. Fujioka ◽  
T. Toncian ◽  
A. V. Arefiev

Abstract We present the first 3D fully kinetic simulations of laser driven sheath-based ion acceleration with a kilotesla-level applied magnetic field. The application of a strong magnetic field significantly and beneficially alters sheath based ion acceleration and creates two distinct stages in the acceleration process associated with the time-evolving magnetization of the hot electron sheath. The first stage delivers dramatically enhanced acceleration, and the second reverses the typical outward-directed topology of the sheath electric field into a focusing configuration. The net result is a focusing, magnetic field-directed ion source of multiple species with strongly enhanced energy and number. The predicted improvements in ion source characteristics are desirable for applications and suggest a route to experimentally confirm magnetization-related effects in the high energy density regime. We additionally perform a comparison between 2D and 3D simulation geometry, on which basis we predict the feasibility of observing magnetic field effects under experimentally relevant conditions.


Sign in / Sign up

Export Citation Format

Share Document