scholarly journals Adipose type I interferon signalling protects against metabolic dysfunction

2017 ◽  
Vol 66 (1) ◽  
pp. S609
Author(s):  
T. Adolph ◽  
V. Wieser ◽  
C. Grander ◽  
F. Grabherr ◽  
B. Enrich ◽  
...  
2019 ◽  
Author(s):  
Helen Heath ◽  
Gary Britton ◽  
Hiromi Kudo ◽  
George Renney ◽  
Malcolm Ward ◽  
...  

ABSTRACTSeverity of sterile inflammation, as seen in acute pancreatitis, is determined by damage-sensing receptors, signalling cascades and cytokine production. Stat2 is a type I interferon signalling mediator that also has interferon-independent roles in murine lipopolysaccharide-induced NF-κB-mediated sepsis. However its role in sterile inflammation is unknown. We hypothesised that Stat2 determines severity of non-infective inflammation in the pancreas.Wild type (WT) and Stat2−/− mice were injected intraperitoneally with cerulein or L-arginine. Specific cytokine-blocking antibodies were used in some experiments. Pancreata and blood were harvested 1h and 24h after the final dose of cerulein and up to 96h post L-arginine. Whole-tissue phosphoproteomic changes were assessed using label-free mass spectrometry. Tissue-specific Stat2 effects were studied in WT/Stat2−/− bone-marrow chimera and using Cre-lox recombination to delete Stat2 in pancreatic and duodenal homeobox 1(Pdx1)-expressing cells.Stat2−/− mice were protected from cerulein- and L-arginine-induced pancreatitis. Protection was independent of type I interferon signalling. Stat2−/− mice had lower cytokine levels including TNFα and IL-10 and reduced NF-kB nuclear localisation in pancreatic tissue compared to WT. Inhibition of TNFα improved (inhibition of IL-10 worsened) cerulein-induced pancreatitis in WT but not Stat2−/− mice. Phosphoproteomics showed down-regulation of mitogen-activated protein kinase (MAPK) mediators but accumulation of Ser412-phosphorylated Tak1. Stat2 deletion in Pdx1-expressing acinar cells (Stat2flox/Pdx1-cre) reduced pancreatic TNFα expression, but not histological injury or serum amylase. WT/Stat2−/− bone-marrow chimera were protected from pancreatitis irrespective of host or recipient genotype.Stat2 loss results in disrupted signalling in pancreatitis, upstream of NF-κB in non-acinar and/or bone marrow derived cells.


2020 ◽  
Author(s):  
Yuanjiu Lei ◽  
Camila Guerra Martinez ◽  
Sylvia Torres-Odio ◽  
Samantha L. Bell ◽  
Christine E. Birdwell ◽  
...  

AbstractMitochondrial dysfunction is a key driver of inflammatory responses in human disease. However, it remains unclear whether alterations in mitochondria-innate immune crosstalk contribute to the pathobiology of mitochondrial disorders and aging. Using the polymerase gamma (POLG) mutator model of mitochondrial DNA (mtDNA) instability, we report that aberrant activation of the type I interferon (IFN-I) innate immune axis potentiates immunometabolic dysfunction, reduces healthspan, and accelerates aging in mutator mice. Mechanistically, elevated IFN-I signaling suppresses activation of nuclear factor erythroid 2-related factor 2 (Nrf2), which increases oxidative stress, enhances pro-inflammatory cytokine responses, and accelerates metabolic dysfunction. Ablation of IFN-I signaling attenuates hyper-inflammatory phenotypes by restoring Nrf2 activity and reducing aerobic glycolysis, which combine to lessen cardiovascular and myeloid dysfunction in aged mutator mice. These findings further advance our knowledge of how mitochondrial dysfunction shapes innate immune responses and provide a framework for understanding mitochondria-driven immunopathology in POLG-related diseases and aging.


2018 ◽  
Vol 3 (3) ◽  
pp. 302-309 ◽  
Author(s):  
Jian Chen ◽  
Yi-feng Yang ◽  
Yu Yang ◽  
Peng Zou ◽  
Jun Chen ◽  
...  

Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2450
Author(s):  
Aneta Gandalovičová ◽  
Anna-Marie Šůchová ◽  
Vladimír Čermák ◽  
Ladislav Merta ◽  
Daniel Rösel ◽  
...  

The invasive behaviour of cancer cells underlies metastatic dissemination; however, due to the large plasticity of invasion modes, it is challenging to target. It is now widely accepted that various secreted cytokines modulate the tumour microenvironment and pro-inflammatory signalling can promote tumour progression. Here, we report that cells after mesenchymal–amoeboid transition show the increased expression of genes associated with the type I interferon response. Moreover, the sustained activation of type I interferon signalling in response to IFNβ mediated by the Stat1/Stat2/IRF9 complex enhances the round amoeboid phenotype in melanoma cells, whereas its downregulation by various approaches promotes the mesenchymal invasive phenotype. Overall, we demonstrate that interferon signalling is associated with the amoeboid phenotype of cancer cells and suggest a novel role of IFNβ in promoting cancer invasion plasticity, aside from its known role as a tumour suppressor.


Viruses ◽  
2017 ◽  
Vol 9 (11) ◽  
pp. 326 ◽  
Author(s):  
Yin Setoh ◽  
Parthiban Periasamy ◽  
Nias Peng ◽  
Alberto Amarilla ◽  
Andrii Slonchak ◽  
...  

Cytokine ◽  
2017 ◽  
Vol 95 ◽  
pp. 7-11 ◽  
Author(s):  
Yalda Karimi ◽  
Sophie M. Poznanski ◽  
Fatemeh Vahedi ◽  
Branson Chen ◽  
Marianne V. Chew ◽  
...  

2013 ◽  
Vol 94 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Jonas Johansson Wensman ◽  
Muhammad Munir ◽  
Srinivas Thaduri ◽  
Katarina Hörnaeus ◽  
Muhammad Rizwan ◽  
...  

Borna disease virus (BDV) is a neurotropic, negative-stranded RNA virus causing persistent infection and progressive neurological disorders in a wide range of warm-blooded animals. The role of the small non-structural X protein in viral pathogenesis is not completely understood. Here we investigated whether the X protein of BDV and avian bornavirus (ABV) interferes with the type I interferon (IFN) system, similar to other non-structural proteins of negative-stranded RNA viruses. In luciferase reporter assays, we found that the X protein of various bornaviruses interfered with the type I IFN system at all checkpoints investigated, in contrast to previously reported findings, resulting in reduced type I IFN secretion.


2021 ◽  
Vol 7 (22) ◽  
pp. eabe7548
Author(s):  
Yuanjiu Lei ◽  
Camila Guerra Martinez ◽  
Sylvia Torres-Odio ◽  
Samantha L. Bell ◽  
Christine E. Birdwell ◽  
...  

Mitochondrial dysfunction is a key driver of inflammatory responses in human disease. However, it remains unclear whether alterations in mitochondria-innate immune cross-talk contribute to the pathobiology of mitochondrial disorders and aging. Using the polymerase gamma (POLG) mutator model of mitochondrial DNA instability, we report that aberrant activation of the type I interferon (IFN-I) innate immune axis potentiates immunometabolic dysfunction, reduces health span, and accelerates aging in mutator mice. Mechanistically, elevated IFN-I signaling suppresses activation of nuclear factor erythroid 2–related factor 2 (NRF2), which increases oxidative stress, enhances proinflammatory cytokine responses, and accelerates metabolic dysfunction. Ablation of IFN-I signaling attenuates hyperinflammatory phenotypes by restoring NRF2 activity and reducing aerobic glycolysis, which combine to lessen cardiovascular and myeloid dysfunction in aged mutator mice. These findings further advance our knowledge of how mitochondrial dysfunction shapes innate immune responses and provide a framework for understanding mitochondria-driven immunopathology in POLG-related disorders and aging.


Sign in / Sign up

Export Citation Format

Share Document