Neuronal subtype-specific expression directed by the GABAA receptor δ subunit gene promoter/upstream region in transgenic mice and in cultured cells

1997 ◽  
Vol 51 (1-2) ◽  
pp. 197-211 ◽  
Author(s):  
Bernhard Lüscher ◽  
Remo Häuselmann ◽  
Sabine Leitgeb ◽  
Thomas Rülicke ◽  
Jean-Marc Fritschy
1997 ◽  
Vol 51 (1-2) ◽  
pp. 212-219 ◽  
Author(s):  
Silke Penschuck ◽  
Bernhard Lüscher ◽  
Jean-Marc Fritschy ◽  
Florence Crestani

1989 ◽  
Vol 9 (11) ◽  
pp. 5113-5122
Author(s):  
J A Bokar ◽  
R A Keri ◽  
T A Farmerie ◽  
R A Fenstermaker ◽  
B Andersen ◽  
...  

The single-copy gene encoding the alpha subunit of glycoprotein hormones is expressed in the pituitaries of all mammals and in the placentas of only primates and horses. We have systematically analyzed the promoter-regulatory elements of the human and bovine alpha-subunit genes to elucidate the molecular mechanisms underlying their divergent patterns of tissue-specific expression. This analysis entailed the use of transient expression assays in a chorionic gonadotropin-secreting human choriocarcinoma cell line, protein-DNA binding assays, and expression of chimeric forms of human or bovine alpha subunit genes in transgenic mice. From the results, we conclude that placental expression of the human alpha-subunit gene requires a functional cyclic AMP response element (CRE) that is present as a tandem repeat in the promoter-regulatory region. In contrast, the promoter-regulatory region of the bovine alpha-subunit gene, as well as of the rat and mouse genes, was found to contain a single CRE homolog that differed from its human counterpart by a single nucleotide. This difference substantially reduced the binding affinity of the bovine CRE homolog for the nuclear protein that bound to the human alpha CRE and thereby rendered the bovine alpha-subunit promoter inactive in human choriocarcinoma cells. However, conversion of the bovine alpha CRE homolog to an authentic alpha CRE restored activity to the bovine alpha-subunit promoter in choriocarcinoma cells. Similarly, a human but not a bovine alpha transgene was expressed in placenta in transgenic mice. Thus, placenta-specific expression of the human alpha-subunit gene may be the consequence of the recent evolution of a functional CRE. Expression of the human alpha transgene in mouse placenta further suggests that evolution of placenta-specific trans-acting factors preceded the appearance of this element. Finally, in contrast to their divergent patterns of placental expression, both the human and bovine alpha-subunit transgenes were expressed in mouse pituitary, indicating differences in the composition of the enhancers required for pituitary- and placenta-specific expression.


2000 ◽  
Vol 24 (2) ◽  
pp. 225-232 ◽  
Author(s):  
E Takahashi ◽  
N Miyamoto ◽  
T Nagasu

The omega-agatoxin-IVA-sensitive P/Q-type Ca(2+) channel plays a role in insulin release from the pancreatic islets of beta cells. To dissect the molecular mechanisms underlying beta cell expression of the P/Q-type channel, we characterized the 5'-upstream region of the mouse alpha(1A) subunit gene using transgenic mice and HIT insulinoma cells. The E. coli lacZ reporter gene was expressed in pancreatic acini and islets in transgenic mice carrying the 6.3 kb or 3.0 kb of the 5'-upstream region, although those with 1.5 kb or 0. 5 kb of the 5'-upstream region failed to show reporter expression on histological examination. As the expression of alpha(1A)subunit gene could not be detected in acini using RT-PCR analysis, the reporter expression in acini might have been ectopic expression. When linked to the placental alkaline phosphatase reporter gene to examine promoter activity for beta cell expression, the 6.3 kb and 3.0 kb fragment of the 5'-upstream region, but not the smaller 1.5 kb fragment, were able to drive reporter gene expression in HIT cells. The sequence between 3.0 and 1.5 kb upstream of the start codon enhanced thymidine kinase promoter activity in HIT cells, but not in fibroblast NIH3T3 cells. These results suggested that the beta cell-specific elements of the alpha(1A) subunit gene are likely to be located in the distal upstream region (-3021 to-1563) of the 5'-upstream sequence and that the 6.3 kb fragment of the 5'-upstream region alone might be a lack of a negative cis-regulatory element(s) to suppress the alpha(1A) subunit gene expression in acini.


1996 ◽  
Vol 183 (3) ◽  
pp. 1259-1263 ◽  
Author(s):  
M Li ◽  
U Wirthmueller ◽  
J V Ravetch

The human low affinity receptors for the Fc domain of immunoglobulin G, Fc gamma RIII, are encoded by two genes (IIIA and IIIB) which share >95% sequence identity in both coding and flanking sequences. Despite this extraordinary sequence conservation, IIIA is expressed in natural killer (NK) cells and macrophages and is absent in neutrophils, whereas IIIB is expressed only in neutrophils. To determine the molecular basis for this differential expression, we have generated transgenic mice using the genomic sequences of IIIA and IIIB. IIIA and IIIB transgenic mice show faithful reconstitution of this human pattern of cell type specificity. To determine the cis acting sequence elements that confer this specificity, we constructed chimeric genes in which 5.8 kb of 5' sequences of the IIIB gene has been replaced with a homologous region from the IIIA gene, and conversely, IIIA 5' sequences have been substituted for the analogous region of the IIIB gene. Promoter swap transgenic mice that carry IIIA 5' flanking sequences express Fc gamma RIII in macrophages and NK cells. In contrast, promoter swap transgenic mice that contain IIIB 5' sequences express Fc gamma RIII in neutrophils only. These studies define the elements conferring the cell type-specific expression of the human Fc gamma RIII genes within the 5' flanking sequences and first intron of the human Fc gamma RIIIA and Fc gamma RIIIB genes.


Sign in / Sign up

Export Citation Format

Share Document