Experiences with high-volume, high-accuracy document capture

1997 ◽  
Vol 19 (1) ◽  
pp. 83
Keyword(s):  
2014 ◽  
Vol 2014 (DPC) ◽  
pp. 001727-001758
Author(s):  
Johann Weinhaendler ◽  
Rudolf Kaiser ◽  
Hardy Kellermann

Fueled by the Internet and nowadays unlimited connectivity expectations, the assembly of optoelectronic packages became a key element to enable the explosive growth in the communication field around the entire globe. The primary challenge in the field of advanced optoelectronics and photonic device packaging (e.g. laser diodes, VCSEL's, optical benches, lenses etc.) is to accurately align the different optical components in reference to each other for optimal optical device performance. This growing need for high precision die attach (<= 0.5um @ 3 sigma) systems and solutions at the shortest possible cycle times has been studied and implemented by AMICRA Microtechnologies. AMICRA's state of the art high accuracy automated assembly system solutions have been successfully used for over a decade in both a laboratory setup and a high volume manufacturing environment. From handling a large variety of substrate materials, thin and fragile chips with odd aspect ratios, lenses and other components, the flexible and dynamic vision alignment concept and the bonding process controls required to achieve high overall component placement accuracies has been AMCIRA's industry focus since the company's inception. While significant progress has been made to provide solutions for all communications and photonics applications there are currently still some challenges out there to be overcome, challenges that can also change on an application by application basis. Besides the technical challenges the cost effectiveness or cost per bond for those applications is a very critical overall success factor as well. This paper will elaborate on manufacturability concerns and equipment automation challenges associated with the key parameters of a Photonics applications high accuracy die attach process which, amongst others, not only require highly sophisticated vision alignment algorithms but also thermal transfer processes either using an eutectic process or a laser soldering technique. Given the ever shrinking packaging form factors, all of AMICRA's research and developments in the Photonics field have also been successfully introduced and applied in more traditional semiconductor applications which have an increasing need for high accuracy die attach.


Author(s):  
D. E. Fornwalt ◽  
A. R. Geary ◽  
B. H. Kear

A systematic study has been made of the effects of various heat treatments on the microstructures of several experimental high volume fraction γ’ precipitation hardened nickel-base alloys, after doping with ∼2 w/o Hf so as to improve the stress rupture life and ductility. The most significant microstructural chan§e brought about by prolonged aging at temperatures in the range 1600°-1900°F was the decoration of grain boundaries with precipitate particles.Precipitation along the grain boundaries was first detected by optical microscopy, but it was necessary to use the scanning electron microscope to reveal the details of the precipitate morphology. Figure 1(a) shows the grain boundary precipitates in relief, after partial dissolution of the surrounding γ + γ’ matrix.


Author(s):  
M. Nishigaki ◽  
S. Katagiri ◽  
H. Kimura ◽  
B. Tadano

The high voltage electron microscope has many advantageous features in comparison with the ordinary electron microscope. They are a higher penetrating efficiency of the electron, low chromatic aberration, high accuracy of the selected area diffraction and so on. Thus, the high voltage electron microscope becomes an indispensable instrument for the metallurgical, polymer and biological specimen studies. The application of the instrument involves today not only basic research but routine survey in the various fields. Particularly for the latter purpose, the performance, maintenance and reliability of the microscope should be same as those of commercial ones. The authors completed a 500 kV electron microscope in 1964 and a 1,000 kV one in 1966 taking these points into consideration. The construction of our 1,000 kV electron microscope is described below.


Author(s):  
M.G. Burke ◽  
M.K. Miller

Interpretation of fine-scale microstructures containing high volume fractions of second phase is complex. In particular, microstructures developed through decomposition within low temperature miscibility gaps may be extremely fine. This paper compares the morphological interpretations of such complex microstructures by the high-resolution techniques of TEM and atom probe field-ion microscopy (APFIM).The Fe-25 at% Be alloy selected for this study was aged within the low temperature miscibility gap to form a <100> aligned two-phase microstructure. This triaxially modulated microstructure is composed of an Fe-rich ferrite phase and a B2-ordered Be-enriched phase. The microstructural characterization through conventional bright-field TEM is inadequate because of the many contributions to image contrast. The ordering reaction which accompanies spinodal decomposition in this alloy permits simplification of the image by the use of the centered dark field technique to image just one phase. A CDF image formed with a B2 superlattice reflection is shown in fig. 1. In this CDF micrograph, the the B2-ordered Be-enriched phase appears as bright regions in the darkly-imaging ferrite. By examining the specimen in a [001] orientation, the <100> nature of the modulations is evident.


2007 ◽  
Vol 177 (4S) ◽  
pp. 331-331 ◽  
Author(s):  
Stephen D.W. Beck ◽  
Richard S. Foster ◽  
Richard Bihrle ◽  
John P. Donohue

2006 ◽  
Vol 175 (4S) ◽  
pp. 8-9 ◽  
Author(s):  
Brent K. Hollenbeck ◽  
Yongliang Wei ◽  
John D. Birkmeyer

VASA ◽  
2019 ◽  
Vol 48 (6) ◽  
pp. 516-522 ◽  
Author(s):  
Verena Mayr ◽  
Mirko Hirschl ◽  
Peter Klein-Weigel ◽  
Luka Girardi ◽  
Michael Kundi

Summary. Background: For diagnosis of peripheral arterial occlusive disease (PAD), a Doppler-based ankle-brachial-index (dABI) is recommended as the first non-invasive measurement. Due to limitations of dABI, oscillometry might be used as an alternative. The aim of our study was to investigate whether a semi-automatic, four-point oscillometric device provides comparable diagnostic accuracy. Furthermore, time requirements and patient preferences were evaluated. Patients and methods: 286 patients were recruited for the study; 140 without and 146 with PAD. The Doppler-based (dABI) and oscillometric (oABI and pulse wave index – PWI) measurements were performed on the same day in a randomized cross-over design. Specificity and sensitivity against verified PAD diagnosis were computed and compared by McNemar tests. ROC analyses were performed and areas under the curve were compared by non-parametric methods. Results: oABI had significantly lower sensitivity (65.8%, 95% CI: 59.2%–71.9%) compared to dABI (87.3%, CI: 81.9–91.3%) but significantly higher specificity (79.7%, 74.7–83.9% vs. 67.0%, 61.3–72.2%). PWI had a comparable sensitivity to dABI. The combination of oABI and PWI had the highest sensitivity (88.8%, 85.7–91.4%). ROC analysis revealed that PWI had the largest area under the curve, but no significant differences between oABI and dABI were observed. Time requirement for oABI was significantly shorter by about 5 min and significantly more patients would prefer oABI for future testing. Conclusions: Semi-automatic oABI measurements using the AngER-device provide comparable diagnostic results to the conventional Doppler method while PWI performed best. The time saved by oscillometry could be important, especially in high volume centers and epidemiologic studies.


2014 ◽  
Vol 74 (S 01) ◽  
Author(s):  
R Mavrova ◽  
JC Radosa ◽  
D Bardens ◽  
K Neis ◽  
S Wagenpfeil ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document