B cells as initial sensors of the adaptive immune response

Inmunología ◽  
2008 ◽  
Vol 27 (2) ◽  
pp. 95-100
Author(s):  
Y.R. Carrasco
2006 ◽  
Vol 203 (11) ◽  
pp. 2409-2412 ◽  
Author(s):  
Stephan Bergmann ◽  
Pier Paolo Pandolfi

CD40 was initially identified as a receptor expressed by B cells that is crucial for inducing an effective adaptive immune response. CD40 was subsequently shown to be expressed by endothelial cells and to promote angiogenesis. New data now show that in tumor-prone transgenic mice, CD40-mediated neovascularization is essential for early stage tumorigenicity. This suggests, at least in this mouse model, that CD40 has an important role in the angiogenic process that is coupled to carcinogenesis, a finding that could lead to novel therapeutic opportunities.


Author(s):  
Marta Ferreira-Gomes ◽  
Andrey Kruglov ◽  
Pawel Durek ◽  
Frederik Heinrich ◽  
Caroline Tizian ◽  
...  

Here we have analyzed the dynamics of the adaptive immune response triggered by SARS-CoV-2 in severely affected COVID-19 patients, as reflected by activated B cells egressing into the blood, at the single cell level. Early on, before seroconversion in response to SARS-CoV-2 spike protein, activated peripheral B cells displayed a type 1 interferon-induced gene expression signature. After seroconversion, activated B cells lost this signature, expressed IL-21- and TGF-β-induced gene expression signatures, and mostly IgG1 and IgA1. In the sustained immune reaction of the COVID-19 patients, until day 59, activated peripheral B cells shifted to expression of IgA2, reflecting instruction by TGF-β. Despite the continued generation of activated B cells, those cells were not found in the lungs of deceased COVID-19 patients, nor did the IgA2 bind to dominant antigens of SARS-CoV-2. In severe COVID-19, SARS-CoV-2 thus triggers a chronic immune reaction distracted from itself and instructed by TGF-β.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5774-5774
Author(s):  
Elena Marinelli Busilacchi ◽  
Andrea Costantini ◽  
Nadia Viola ◽  
Benedetta Costantini ◽  
Antonella Poloni ◽  
...  

Abstract Introduction Chronic Graft Versus Host Disease (cGVHD) is a major complication of allogeneic stem-cell transplantation and is characterized by frequent multi-organ involvement that resembles the autoimmune diseases. Donor-derived CD4+ and CD8+ T lymphocytes have classically been considered to be the main effector cells mediating GVHD pathogenesis. Indeed, removal of T cells from transplant inocula almost completely prevents GVHD developing, at the price of increased incidences of graft rejection and disease recurrence. However recent studies suggest that B cells might also play an important role in the biology of cGVHD. The role of Treg lymphocytes in the pathogenesis of cGVHD is still controversial and the tyrosine kinase inhibitor′s (TKI) role in the modulation of this pathway is not yet fully characterized. In vitro data confirm that TKIs regulates both innate and adaptive immune response by interacting with many cell population such as T-cells, B-cells, dendritic cells, mast cells and macrophages. According to these observations, we investigated the TKI′s immunomodulatory effects (Nilotinib, Dasatinib, Imatinib, Ponatinib) on lymphocyte populations. Materials and Methods Peripheral blood mononuclear cells were isolated by density gradient centrifugation using Ficoll-Biocoll. Cells were cultured in RPMI 1640 at a concentration 1x106 cell/well. Nilotinib, Imatinib, Dasatinib and Ponatinib were added to cell cultures at serial concentration (Imatinib:1μM,10μM,50μM; Nilotinib:0.5μM,2μM,10μM; Dasatinib:50nM,100nM,200nM; Ponatinib:1nM,10nM,50nM,100nM) on the first day. Six-color flow cytometry analysis (Facs Canto II) was performed on the cells harvested after 96 h cultures using conjugated antibodies (CD3,CD4,CD16,CD56,CD3,CD25,CD19,CD45RA,FoxP3,CD127,7-Aminoactinomycin-D), for cell cycle analysis cells were stained with propidium iodide. For cytokine analysis, supernatants were collected and analyzed for cytokines according to the instruction of Bio-Plex Pro Human Cytokine 17-plex Assay with Bio-Plex (Bio-Rad). Results A significant decrease of cytotoxic T cells viability was observed when cells were cultured in presence of Imatinib (50μM,p<0.01), Ponatinib (10nM,p<0.05) and Dasatinib (100nM,p<0.01). On the contrary, exposure to Nilotinib didn′t induce cell death. Increasing concentrations of all the tested TKI significantly inhibited T cell proliferation in a dose-dependent manner; the effect become statistically significant starting from Imatinib (1μM,p<0.05), Dasatinib (50nM,p<0.01), Ponatinib (50nM,p<0.01) and Nilotinib (0.5μM,p<0.01). Exposure to Imatinib, Dasatinib and Ponatinib induced a statistically significant decrease (p<0.01) of Treg cells proportion, even at the lowest drug concentration in culture; Nilotinib induced Treg decrease only at concentrations exceeding 2μM (p<0.01), higher than those usually achieved in clinical practice. A significant increase of naive Treg apoptosis was observed after exposure to Dasatinib (50nmM,p<0.01), Ponatinib (50nM,p<0.01) and Imatinib (50μM,p<0.01); exposure to Nilotinib has no effect on this population. Both Nilotinib and Dasatinib induced a profound inhibition of pro-inflammatory cytokine production (in particular TNFα, IFNγ, IL13 and IL17) when added to the cell cultures (p<0.05); slower decrease in supernatant cytokine concentration was observed in presence of either Imatinib (50μM,p<0.05) and Ponatinib (50nM,p<0.05). Increasing concentrations of all TKIs except Nilotinib induced a significant decline of NK cells (p<0.01) and B cell (p<0.01). Conclusion The present study focuses the peculiar Nilotinib activity on lymphocyte′s regulation: this TKI, at therapeutic concentrations in vitro, interact with innate and adaptive immune response show anti-inflammatory properties. Unlike other TKIs, Nilotinib determine inflammatory cytokines reduction, preserving T cell population and Treg. These data support the potential use of Nilotinib in cGVHD Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


2022 ◽  
Author(s):  
Raquel Guillamat-Prats ◽  
Daniel Hering ◽  
Martina Rami ◽  
Carmen Haerdner ◽  
Donato Santovito ◽  
...  

Abstract Identifying novel pathways regulating the adaptive immune response in chronic inflammatory diseases such as atherosclerosis is of particular interest in view of developing new therapeutic drugs. Here we report that the lipid receptor GPR55 is highly expressed by splenic B cells and inversely correlates with atheroma plaque size in mice. In human carotid endarterectomy specimen, GPR55 transcript levels were significantly lower in unstable compared to stable carotid plaques. To study the impact of GPR55 deficiency in atherosclerosis, we crossed Gpr55 knockout mice with apolipoprotein E (ApoE) knockout mice and subjected the mice to Western diet for 4 to 16 weeks. Compared to ApoE-/- controls, ApoE-/-Gpr55-/- mice developed larger plaques with increased necrotic core size, associated with elevated circulating and aortic leukocyte counts. Flow cytometry, immunofluorescence and RNA-sequencing analysis of splenic B cells in these mice revealed a hyperactivated B cell phenotype with disturbed plasma cell maturation and immunoglobulin (Ig)G antibody overproduction. The specific contribution of B cell GPR55 in atherosclerosis was further studied in mixed Gpr55-/-/µMT bone marrow chimeras on low density receptor deficiency (Ldlr-/-) background, revealing that B-cell specific depletion of Gpr55 was sufficient to promote plaque development. Conversely, adoptive transfer of wildtype B cells into ApoE-/-Gpr55-/- mice blunted the proatherogenic phenotype. In vitro stimulation of splenocytes with the endogenous GPR55 ligand LPI promoted plasma cell proliferation and enhanced B cell activation marker expression, which was inhibited by the GPR55 antagonist CID16020046. Collectively, these discoveries provide new evidence for GPR55 as key modulator of the adaptive immune response in atherosclerosis. Targeting GPR55 could be useful to limit inflammation and plaque progression in patients suffering from atherosclerosis.


2021 ◽  
Author(s):  
Raquel Guillamat-Prats ◽  
Daniel Hering ◽  
Martina Rami ◽  
Carmen Haerdtner ◽  
Donato Sanovito ◽  
...  

Identifying novel pathways regulating the adaptive immune response in chronic inflammatory diseases such as atherosclerosis is of particular interest in view of developing new therapeutic drugs. Here we report that the lipid receptor GPR55 is highly expressed by splenic B cells and inversely correlates with atheroma plaque size in mice. In human carotid endarterectomy specimen, GPR55 transcript levels were significantly lower in unstable compared to stable carotid plaques. To study the impact of GPR55 deficiency in atherosclerosis, we crossed Gpr55 knockout mice with apolipoprotein E (ApoE) knockout mice and subjected the mice to Western diet for 4 to 16 weeks. Compared to ApoE-/- controls, ApoE-/-Gpr55-/- mice developed larger plaques with increased necrotic core size, associated with elevated circulating and aortic leukocyte counts. Flow cytometry, immunofluorescence and RNA-sequencing analysis of splenic B cells in these mice revealed a hyperactivated B cell phenotype with disturbed plasma cell maturation and immunoglobulin (Ig)G antibody overproduction. The specific contribution of B cell GPR55 in atherosclerosis was further studied in mixed Gpr55-/-/μMT bone marrow chimeras on low density receptor deficiency (Ldlr-/-) background, revealing that B-cell specific depletion of Gpr55 was sufficient to promote plaque development. Conversely, adoptive transfer of wildtype B cells into ApoE-/-Gpr55-/- mice blunted the proatherogenic phenotype. In vitro stimulation of splenocytes with the endogenous GPR55 ligand LPI promoted plasma cell proliferation and enhanced B cell activation marker expression, which was inhibited by the GPR55 antagonist CID16020046. Collectively, these discoveries provide new evidence for GPR55 as key modulator of the adaptive immune response in atherosclerosis. Targeting GPR55 could be useful to limit inflammation and plaque progression in patients suffering from atherosclerosis.


Sign in / Sign up

Export Citation Format

Share Document