The role of homologous recombination processes in the repair of severe forms of DNA damage in mammalian cells

Biochimie ◽  
1999 ◽  
Vol 81 (1-2) ◽  
pp. 77-85 ◽  
Author(s):  
John Thacker
NAR Cancer ◽  
2020 ◽  
Vol 2 (3) ◽  
Author(s):  
McKenzie K Grundy ◽  
Ronald J Buckanovich ◽  
Kara A Bernstein

Abstract Regulation of homologous recombination (HR) is central for cancer prevention. However, too little HR can increase cancer incidence, whereas too much HR can drive cancer resistance to therapy. Importantly, therapeutics targeting HR deficiency have demonstrated a profound efficacy in the clinic improving patient outcomes, particularly for breast and ovarian cancer. RAD51 is central to DNA damage repair in the HR pathway. As such, understanding the function and regulation of RAD51 is essential for cancer biology. This review will focus on the role of RAD51 in cancer and beyond and how modulation of its function can be exploited as a cancer therapeutic.


2008 ◽  
Vol 68 (1) ◽  
pp. 257-265 ◽  
Author(s):  
James W. Evans ◽  
Sophia B. Chernikova ◽  
Lisa A. Kachnic ◽  
Judit P. Banath ◽  
Olivier Sordet ◽  
...  

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 416-416
Author(s):  
Maria Gkotzamanidou ◽  
Masood Shammas ◽  
Jesus Martin Sanchez ◽  
Lai Ding ◽  
Stephane Minvielle ◽  
...  

Abstract Epigenomic changes have become an important component of cellular regulation and ultimately, of our understanding of oncogenomics in Multiple Myeloma (MM) as well as in other cancers. In recent years, both clinical and preclinical studies have confirmed that MM is vulnerable to epigenetic intervention, with histone deacetylases (HDACs) emerging as the most promising epigenetic targets. Although Pan-HDAC inhibitors are effective as therapeutic agents, there is increasing emphasis on understanding the biological and molecular roles of individual HDACs. Here we have evaluated the role of HDAC8, a member of Class I HDAC isoenzymes in MM. First, we evaluated the expression of HDAC8 in 172 newly-diagnosed MM patients from the IFM myeloma dataset and observed HDAC8 overexpression as well as its significant correlation with poor survival outcome (p<0.0015). We further evaluated the expression of HDAC8 in HMCLs (probe ID_223909-s_at, 223345_at) and confirmed the high expression and its cytoplasmic and nuclear localization in all six MM cells lines studied (MM1S, OPM2, RPMI8226, U266, MOLP8 and NCI-H929) and in primary bone marrow plasma cells (CD138+) from newly diagnosed MM patients (N=3). To address the functional role of HDAC8 in MM biology and to evaluate its potency as therapeutic target, we used a lentiviral-shRNA delivery system for HDAC8-knockdown in MM1S and OPM2 myeloma cells. The HDAC8 depletion in HMCLs resulted in significant inhibition of proliferation of MM at 1 week as measured by 3[H]-thymidine assay, and as decrease in colony formation evaluated after 3 weeks post transfection (p<.001). We observed similar cell growth inhibition using PCI-34051, a small molecule HDAC8 inhibitor. Interestingly, the combination of HDAC8 inhibitor with melphalan or bendamustine enhanced the anti-MM effects of the DNA damaging agents (all p<0.01) and was confirmed to be synergistic using Calcusyn software. Immunoblotting using a panel of 15 antibodies for DNA damage response (DDR) pathway proteins (including γH2Ax, pATM, pATR, pBRCA1, pBRCA2, pCHK2, pCHK1, ku70, RPA70, 53BP1, DNA-PKs, pP53) confirmed increased levels of DNA damage in OPM2 and MM1S cells with HDAC8 depletion. In consistence with this observation HDAC8 knockdown led to decreased homologous recombination (HR) activity as measured by a transient direct repeat DsRED-GFP/I-SceI plasmid-based assay. We performed singe cell electrophoresis under neutral conditions (comet-assay) in OPM2 and MM1S after HDAC8 depletion with or without exposure to gamma irradiation (γ-IR), and in OPM2 and MM1S cells treated and untreated with HDAC8 inhibitor in combination with γ-IR and observed decreased repair of DSBs after γ-IR measured following HDAC8 knockdown as well as following treatment of the cells with HDAC8 inhibitor. Importantly, using laser micro-irradiation in myeloma and U2OS cells, we observed HDAC8 recruitment to DSBs sites. Moreover, the HDAC8 protein was co-localized and co-immunoprecipitated with Rad51 after IR, and with Scm3, member of cohesion complex after mitotic sychronization, suggesting its relation with cytoskeleton. We confirmed the significant alteration in expression of cohesion complex members SMC1 and RAD21 after HDAC8 depletion and re-overexpression in MM cells. In MM1s cells containing a stably integrated Rad51-luciferase reporter construct, the addition of HDAC8 inhibitor resulted in a decrease in Rad51 promoter activity, confirming the immunoblotting findings. An ongoing mass spectromentry-based analysis is expected to identify thoroughly the HDAC8-interacting proteins. In conclusion, our results demonstrate an impact of aberrant epigenome on DNA integrity through connection between HDAC8 and DDR pathway, and provide insights into the effect of HDAC8 on cellular growth and survival with potent therapeutic implications in MM. Disclosures Anderson: Celgene: Consultancy; Sanofi-Aventis: Consultancy; Onyx: Consultancy; Acetylon: Scientific Founder, Scientific Founder Other; Oncoprep: Scientific Founder Other; Gilead Sciences: Consultancy.


2018 ◽  
Author(s):  
Nealia C.M. House ◽  
Erica J. Polleys ◽  
Ishtiaque Quasem ◽  
Cailin E. Joyce ◽  
Oliver Takacsi-Nagy ◽  
...  

AbstractDNA are sites of genomic instability. Long CAG/CTG repeats form hairpin structures, are fragile, and can expand during DNA repair. The chromatin response to DNA damage can influence repair fidelity, but the knowledge of chromatin modifications involved in maintaining repair fidelity within repetitive DNA is limited. In a screen for CAG repeat fragility in Saccharomyces cerevisiae, histone 2A copy 1 (H2A.1) was identified to protect the repeat from increased rates of breakage. To address the role of H2A in CAG repeat instability, we tested the effect of deleting each histone H2 subytpe. Whereas deletion of HTA2, HTZ1, HTB1, and HTB2 did not significantly affect CAG repeat maintenance, deletion of HTA1 resulted in increased expansion frequency. Notably, mutation of threonine 126, unique to H2A.1, to a non-phosphorylatable alanine increased CAG repeat instability to a similar level as the hta1Δ mutant. CAG instability in the absence of HTA1 or mutation to hta1-T126A was dependent on the presence of the homologous recombination (HR) repair proteins Rad51, Rad52, and Rad57, and the Polδ subunit Pol32. In addition, sister chromatid recombination (SCR) was suppressed in the hta1Δ and hta1-T126A mutants and this suppression was epistatic to pol32Δ. Finally, break-induced replication (BIR) is impaired in the hta1Δ mutant, resulting in an altered repair profile. These data reveal differential roles for the H2A subtypes in DNA repair and implicate a new role for H2A.1 threonine-126 phosphorylation in mediating fidelity during HR repair and promoting SCR. Using a fragile, repetive DNA element to model endogenous DNA damage, our results demonstrate that H2A.1 plays a greater role than H2A.2 in promoting homology-dependent repair, suggesting H2A.1 is the true homolog of mammalian H2AX, whereas H2A.2 is functionally equivalent to mammalian H2A.Author SummaryCAG/CTG trinuncleotide repeats are fragile sequences that when expanded can cause human disease. To evaluate the role of S. cerevisiae histone H2A copies in DNA repair, we have measured instability of an expanded CAG/CTG repeat tract and repair outcomes in H2A mutants. Although the two copies of H2A are nearly identical in amino acid sequence, we found that the CAG repeat is more unstable in the absence of H2A copy 1 (H2A.1) than H2A copy 2, and that this role appears to be partially dependent on a phosphorylatable threonine at residue 126 in the C-terminal tail of H2A.1. Further, we show through a series of genetic assays that H2A.1 plays a role in promoting homologous recombination events, including sister chromatid recombination and break-induced replication. Our results uncover a role for H2A.1 in mediating fidelity of repair within repetitive DNA, and demonstrate that modification of its unique Thr126 residue plays a role in regulating SCR. Given the dependence of HR repair on H2A.1 but not H2A.2, we conclude that H2A.1 plays a greater repair-specific role in the cell and therefore would be the true homolog of mammalian H2AX.


2011 ◽  
Vol 11 (1) ◽  
pp. 214 ◽  
Author(s):  
Samantha J Hoot ◽  
Xiuzhong Zheng ◽  
Catherine J Potenski ◽  
Theodore C White ◽  
Hannah L Klein

2008 ◽  
Vol 183 (7) ◽  
pp. 1203-1212 ◽  
Author(s):  
Kazuto Sugimura ◽  
Shin-ichiro Takebayashi ◽  
Hiroshi Taguchi ◽  
Shunichi Takeda ◽  
Katsuzumi Okumura

Poly-ADP ribose polymerase 1 (PARP-1) is activated by DNA damage and has been implicated in the repair of single-strand breaks (SSBs). Involvement of PARP-1 in other DNA damage responses remains controversial. In this study, we show that PARP-1 is required for replication fork slowing on damaged DNA. Fork progression in PARP-1−/− DT40 cells is not slowed down even in the presence of DNA damage induced by the topoisomerase I inhibitor camptothecin (CPT). Mammalian cells treated with a PARP inhibitor or PARP-1–specific small interfering RNAs show similar results. The expression of human PARP-1 restores fork slowing in PARP-1−/− DT40 cells. PARP-1 affects SSB repair, homologous recombination (HR), and nonhomologous end joining; therefore, we analyzed the effect of CPT on DT40 clones deficient in these pathways. We find that fork slowing is correlated with the proficiency of HR-mediated repair. Our data support the presence of a novel checkpoint pathway in which the initiation of HR but not DNA damage delays the fork progression.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1248-1248
Author(s):  
Subodh Kumar ◽  
Jagannath Pal ◽  
Jialan Shi ◽  
Puru Nanjappa ◽  
Maria Gkotzamanidou ◽  
...  

Abstract We have previously shown that endonuclease activity is deregulated in myeloma and suppression of base excision repair (BER) associated apurinic/apyrimidinic endonuclease (APE) activity, mediated chemically or transgenically, reduces homologous recombination (HR) and genomic instability in multiple myeloma (MM). The purpose of this study was to investigate the role of BER-specific AP nucleases APE1 and APE2, separately or together, in the activation of HR pathway following exposure of MM cells to different DNA damaging agents and unravel possible mechanism/s and translational significance of this cross talk between two repair pathways in MM. We transduced MM cells with lentivirus-based shRNAs, either control (CS) or those targeting APE1, APE2, or both (APE1/2; double knockdown) and selected the transduced cells in puromycin. Knockdowns were confirmed by Western blotting and Q-PCR. Using evaluation by Q-PCR we observed that whereas APE2 was suppressed by 80% in APE2- as well as double-knockdown cells, it was upregulated by 70% in APE1 knock down cells. These data indicate that certain level of AP nuclease activity is probably required by MM cell to function and is consistent with a 25-30% reduced proliferation rate of double-knockdown cells under spontaneous condition. To study the impact of these modulations on ability of cells to activate HR-mediated repair pathway in response to DNA damage, the cells were exposed to either UV (20 J/m2) and incubated for 2 and 48 hrs or melphalan (2.5 µM) treatment for 24 hrs, and then incubation for further 1 and 24 hrs and evaluated for RAD51 and γ-H2AX foci. Following UV treatment, RAD51 foci were detected in 91%, 48%, 49%, and 28% of cells transduced with control, APE1, APE2, or both shRNAs, respectively. Similary melphalan treatment induced RAD51 foci in 76% of control shRNA transduced cells whereas only in 46%, 47%, and 27% of APE1, APE2, and APE1/2-knockdown cells. These data show that AP nuclease activity is involved in DNA damaging agent-induced activation of HR repair pathway. Impact of the suppression of AP nucleases was also assessed on cell proliferation at 48 hrs after treatment with melphalan. Viability of cells lacking APE1, APE2, and APE1/2 relative to control shRNA-transduced cells was reduced by 28%, 26%, and 43% (P<0.00005), respectively, within 48 hrs of treatment. In summary, we show that: 1) AP nuclease activity plays a critical role in the activation of HR-mediated DNA repair and survival of MM cells following DNA damage; 2) Although suppression of APE1 or APE2 alone does not significantly affect spontaneous proliferation rates, simultaneous suppression of both reduces proliferation by ∼25-30%; 3) Suppression of APE1 leads to induction of APE2, indicating that certain level of AP nuclease activity (from either APE1 or APE2) is required by MM cell to function and is consistent with the reduced proliferation rate of double-knockdown cells; 4) Simultaneous suppression of both AP nucleases impairs the activation of HR repair following DNA damage. These data combined with our previous observations conclude that AP nucleases (APE1 and APE2) play critical role in HR-mediated repair and survival of MM cells following DNA damage and are important targets to reduce genomic instability as well as to sensitize MM cells to radio/chemotherapy. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document