Reassessment of the ground state reaction by quantum chemistry methods

2001 ◽  
Vol 264 (2) ◽  
pp. 153-161 ◽  
Author(s):  
I Hadjebar ◽  
M Nait Achour ◽  
A Boucekkine ◽  
G Berthier
Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 492
Author(s):  
Philippe Suchsland ◽  
Francesco Tacchino ◽  
Mark H. Fischer ◽  
Titus Neupert ◽  
Panagiotis Kl. Barkoutsos ◽  
...  

We present a hardware agnostic error mitigation algorithm for near term quantum processors inspired by the classical Lanczos method. This technique can reduce the impact of different sources of noise at the sole cost of an increase in the number of measurements to be performed on the target quantum circuit, without additional experimental overhead. We demonstrate through numerical simulations and experiments on IBM Quantum hardware that the proposed scheme significantly increases the accuracy of cost functions evaluations within the framework of variational quantum algorithms, thus leading to improved ground-state calculations for quantum chemistry and physics problems beyond state-of-the-art results.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 657
Author(s):  
Oliver G. Maupin ◽  
Andrew D. Baczewski ◽  
Peter J. Love ◽  
Andrew J. Landahl

We present example quantum chemistry programs written with JaqalPaq, a python meta-programming language used to code in Jaqal (Just Another Quantum Assembly Language). These JaqalPaq algorithms are intended to be run on the Quantum Scientific Computing Open User Testbed (QSCOUT) platform at Sandia National Laboratories. Our exemplars use the variational quantum eigensolver (VQE) quantum algorithm to compute the ground state energies of the H2, HeH+, and LiH molecules. Since the exemplars focus on how to program in JaqalPaq, the calculations of the second-quantized Hamiltonians are performed with the PySCF python package, and the mappings of the fermions to qubits are obtained from the OpenFermion python package. Using the emulator functionality of JaqalPaq, we emulate how these exemplars would be executed on an error-free QSCOUT platform and compare the emulated computation of the bond-dissociation curves for these molecules with their exact forms within the relevant basis.


2019 ◽  
Vol 15 (3) ◽  
pp. 1728-1742 ◽  
Author(s):  
James S. Spencer ◽  
Nick S. Blunt ◽  
Seonghoon Choi ◽  
Jiří Etrych ◽  
Maria-Andreea Filip ◽  
...  

1986 ◽  
Vol 29 (4) ◽  
pp. 589-596 ◽  
Author(s):  
P. J. Reynolds ◽  
R. N. Barnett ◽  
B. L. Hammond ◽  
R. M. Grimes ◽  
W. A. Lester

Author(s):  
Ben O. Spurlock ◽  
Milton J. Cormier

The phenomenon of bioluminescence has fascinated layman and scientist alike for many centuries. During the eighteenth and nineteenth centuries a number of observations were reported on the physiology of bioluminescence in Renilla, the common sea pansy. More recently biochemists have directed their attention to the molecular basis of luminosity in this colonial form. These studies have centered primarily on defining the chemical basis for bioluminescence and its control. It is now established that bioluminescence in Renilla arises due to the luciferase-catalyzed oxidation of luciferin. This results in the creation of a product (oxyluciferin) in an electronic excited state. The transition of oxyluciferin from its excited state to the ground state leads to light emission.


Sign in / Sign up

Export Citation Format

Share Document