Design and analysis of a high power density and high efficiency permanent magnet DC motor

2000 ◽  
Vol 209 (1-3) ◽  
pp. 234-236 ◽  
Author(s):  
C.C Hwang ◽  
J.J Chang
Author(s):  
J.M. Bailey ◽  
R.A. Hawsey ◽  
D.S. Daniel ◽  
R.J. Thomas

2012 ◽  
Vol 516-517 ◽  
pp. 1651-1654
Author(s):  
Bing Yi Zhang ◽  
Sen Wang ◽  
Gui Hong Feng

This paper attempts to present an optimal design strategy and characteristics of high-power permanent magnet synchronous motor(PMSM). The structures of rotor lamination, calculation of Air-gap Length, how temperature influences the performance of the motor and the calculation of Xad、Xaq under the equivalent direct axis are presented.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 113
Author(s):  
Bo Wang ◽  
Gaurang Vakil ◽  
Ye Liu ◽  
Tao Yang ◽  
Zhuoran Zhang ◽  
...  

Permanent magnet synchronous machines provide many dramatic electromagnetic performances such as high efficiency and high power density, which make them more competitive in aircraft electrification, whereas, designing a permanent magnet starter–generator (PMSG), with given consideration to fault tolerance (FT), is a significant challenge and requires great effort. In this paper, a comprehensive FT PMSG design process is proposed which is applied to power systems of turboprops. Firstly, potential slot/pole combinations were selected based on winding factor, harmonic losses and manufacture issues. Then, pursuing high power density, a multiple objective optimization process was carried out to comprehensively rank performances. To meet a fault tolerance target, electrical, magnetic and thermal isolation topologies were investigated and compared, among which 18 slot/12 pole with dual three-phase was selected as the optimal one, with a power density of 7.9 kW/kg. Finally, a finite element analysis verified the performance in normal and post-fault scenarios. The candidate machine has merits concerning high power density and post-fault performance.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2141 ◽  
Author(s):  
Yuqing Yao ◽  
Chunhua Liu ◽  
Christopher H.T. Lee

Multiphase machines have some distinct merits, including the high power density, high torque density, high efficiency and low torque ripple, etc. which can be beneficial for many industrial applications. This paper presents four different types of six-phase outer-rotor permanent-magnet (PM) brushless machines for electric vehicles (EVs), which include the inserted PM (IPM) type, surface PM (SPM) type, PM flux-switching (PMFS) type, and PM vernier (PMV) type. First, the design criteria and operation principle are compared and discussed. Then, their key characteristics are addressed and analyzed by using the finite element method (FEM). The results show that the PMV type is quite suitable for the direct-drive application for EVs with its high torque density and efficiency. Also, the IPM type is suitable for the indirect-drive application for EVs with its high power density and efficiency.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rohith Mittapally ◽  
Byungjun Lee ◽  
Linxiao Zhu ◽  
Amin Reihani ◽  
Ju Won Lim ◽  
...  

AbstractThermophotovoltaic approaches that take advantage of near-field evanescent modes are being actively explored due to their potential for high-power density and high-efficiency energy conversion. However, progress towards functional near-field thermophotovoltaic devices has been limited by challenges in creating thermally robust planar emitters and photovoltaic cells designed for near-field thermal radiation. Here, we demonstrate record power densities of ~5 kW/m2 at an efficiency of 6.8%, where the efficiency of the system is defined as the ratio of the electrical power output of the PV cell to the radiative heat transfer from the emitter to the PV cell. This was accomplished by developing novel emitter devices that can sustain temperatures as high as 1270 K and positioning them into the near-field (<100 nm) of custom-fabricated InGaAs-based thin film photovoltaic cells. In addition to demonstrating efficient heat-to-electricity conversion at high power density, we report the performance of thermophotovoltaic devices across a range of emitter temperatures (~800 K–1270 K) and gap sizes (70 nm–7 µm). The methods and insights achieved in this work represent a critical step towards understanding the fundamental principles of harvesting thermal energy in the near-field.


2011 ◽  
Vol 4 (5) ◽  
pp. 052104 ◽  
Author(s):  
Di Liu ◽  
Yongqiang Ning ◽  
Yugang Zeng ◽  
Li Qin ◽  
Yun Liu ◽  
...  

2015 ◽  
Vol 51 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Jung Moo Seo ◽  
Jong-Suk Ro ◽  
Se-Hyun Rhyu ◽  
In-Soung Jung ◽  
Hyun-Kyo Jung

2013 ◽  
Vol 310 ◽  
pp. 343-347
Author(s):  
Wen Fu Zhang ◽  
Xue Yi Zhang ◽  
Jian Long Hu ◽  
Hong Bin Yin

Heavy truck cab manual oil pump consumes more time and strength. Using tilting motor can produce larger tilting force for reversing the heavy truck cab and improve the tilting efficiency. The power of tilting motor, permanent magnet, armature plate and winding parameters are optimized on the basis of analyzing the cab tilting system works and the characteristics of the permanent magnet DC motor. The designed Nb-Fe-B PM DC motor is small volume, light weight high efficiency, simple structure and reliable operation characteristics, which can improve the security of tilting device of the heavy truck cab.


Sign in / Sign up

Export Citation Format

Share Document