SCO-spondin is evolutionarily conserved in the central nervous system of the chordate phylum

Neuroscience ◽  
1999 ◽  
Vol 88 (2) ◽  
pp. 655-664 ◽  
Author(s):  
S Gobron ◽  
I Creveaux ◽  
R Meiniel ◽  
R Didier ◽  
B Dastugue ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Meng-Lan Li ◽  
Wen Wang ◽  
Zi-Bing Jin

Circular RNAs (circRNAs) are endogenous single-stranded RNAs characterized by covalently closed loop structures with neither 5′ to 3′ polarity nor poly(A) tails. They are generated most commonly from back-splicing of protein-coding exons. CircRNAs have a tissue-specific distribution and are evolutionarily conserved, and many circRNAs play important biological functions by combining with microRNAs and proteins to regulate protein functions and their own translation. Numerous studies have shown that circRNAs are enriched in the central nervous system (CNS) and play an important role in the development and maintenance of homeostasis. Correspondingly, they also play an important role in the occurrence and progression of CNS diseases. In this review, we highlight the current state of circRNA biogenesis, properties, function and the crucial roles they play in the CNS.


Development ◽  
2018 ◽  
Vol 145 (7) ◽  
pp. dev160747 ◽  
Author(s):  
Behzad Yaghmaeian Salmani ◽  
Ignacio Monedero Cobeta ◽  
Jonathan Rakar ◽  
Susanne Bauer ◽  
Jesús Rodriguez Curt ◽  
...  

2019 ◽  
Vol 116 (35) ◽  
pp. 17547-17555 ◽  
Author(s):  
Wang Zheng ◽  
Yury A. Nikolaev ◽  
Elena O. Gracheva ◽  
Sviatoslav N. Bagriantsev

Tactile information is detected by thermoreceptors and mechanoreceptors in the skin and integrated by the central nervous system to produce the perception of somatosensation. Here we investigate the mechanism by which thermal and mechanical stimuli begin to interact and report that it is achieved by the mechanotransduction apparatus in cutaneous mechanoreceptors. We show that moderate cold potentiates the conversion of mechanical force into excitatory current in all types of mechanoreceptors from mice and tactile-specialist birds. This effect is observed at the level of mechanosensitive Piezo2 channels and can be replicated in heterologous systems using Piezo2 orthologs from different species. The cold sensitivity of Piezo2 is dependent on its blade domains, which render the channel resistant to cold-induced perturbations of the physical properties of the plasma membrane and give rise to a different mechanism of mechanical activation than that of Piezo1. Our data reveal that Piezo2 is an evolutionarily conserved mediator of thermal–tactile integration in cutaneous mechanoreceptors.


Author(s):  
Gladys Harrison

With the advent of the space age and the need to determine the requirements for a space cabin atmosphere, oxygen effects came into increased importance, even though these effects have been the subject of continuous research for many years. In fact, Priestly initiated oxygen research when in 1775 he published his results of isolating oxygen and described the effects of breathing it on himself and two mice, the only creatures to have had the “privilege” of breathing this “pure air”.Early studies had demonstrated the central nervous system effects at pressures above one atmosphere. Light microscopy revealed extensive damage to the lungs at one atmosphere. These changes which included perivascular and peribronchial edema, focal hemorrhage, rupture of the alveolar septa, and widespread edema, resulted in death of the animal in less than one week. The severity of the symptoms differed between species and was age dependent, with young animals being more resistant.


Author(s):  
John L.Beggs ◽  
John D. Waggener ◽  
Wanda Miller ◽  
Jane Watkins

Studies using mesenteric and ear chamber preparations have shown that interendothelial junctions provide the route for neutrophil emigration during inflammation. The term emigration refers to the passage of white blood cells across the endothelium from the vascular lumen. Although the precise pathway of transendo- thelial emigration in the central nervous system (CNS) has not been resolved, the presence of different physiological and morphological (tight junctions) properties of CNS endothelium may dictate alternate emigration pathways.To study neutrophil emigration in the CNS, we induced meningitis in guinea pigs by intracisternal injection of E. coli bacteria.In this model, leptomeningeal inflammation is well developed by 3 hr. After 3 1/2 hr, animals were sacrificed by arterial perfusion with 3% phosphate buffered glutaraldehyde. Tissues from brain and spinal cord were post-fixed in 1% osmium tetroxide, dehydrated in alcohols and propylene oxide, and embedded in Epon. Thin serial sections were cut with diamond knives and examined in a Philips 300 electron microscope.


Author(s):  
Ezzatollah Keyhani

Acetylcholinesterase (EC 3.1.1.7) (ACHE) has been localized at cholinergic junctions both in the central nervous system and at the periphery and it functions in neurotransmission. ACHE was also found in other tissues without involvement in neurotransmission, but exhibiting the common property of transporting water and ions. This communication describes intracellular ACHE in mammalian bone marrow and its secretion into the extracellular medium.


Author(s):  
S.S. Spicer ◽  
B.A. Schulte

Generation of monoclonal antibodies (MAbs) against tissue antigens has yielded several (VC1.1, HNK- 1, L2, 4F4 and anti-leu 7) which recognize the unique sugar epitope, glucuronyl 3-sulfate (Glc A3- SO4). In the central nervous system, these MAbs have demonstrated Glc A3-SO4 at the surface of neurons in the cerebral cortex, the cerebellum, the retina and other widespread regions of the brain.Here we describe the distribution of Glc A3-SO4 in the peripheral nervous system as determined by immunostaining with a MAb (VC 1.1) developed against antigen in the cat visual cortex. Outside the central nervous system, immunoreactivity was observed only in peripheral terminals of selected sensory nerves conducting transduction signals for touch, hearing, balance and taste. On the glassy membrane of the sinus hair in murine nasal skin, just deep to the ringwurt, VC 1.1 delineated an intensely stained, plaque-like area (Fig. 1). This previously unrecognized structure of the nasal vibrissae presumably serves as a tactile end organ and to our knowledge is not demonstrable by means other than its selective immunopositivity with VC1.1 and its appearance as a densely fibrillar area in H&E stained sections.


Sign in / Sign up

Export Citation Format

Share Document