Measurement of scintillation efficiencies and pulse-shapes for nuclear recoils in NaI(Tl) and CaF2(Eu) at low energies for dark matter experiments

1998 ◽  
Vol 433 (1-2) ◽  
pp. 150-155 ◽  
Author(s):  
D.R. Tovey ◽  
V. Kudryavtsev ◽  
M. Lehner ◽  
J.E. McMillan ◽  
C.D. Peak ◽  
...  
2021 ◽  
Vol 2021 (04) ◽  
pp. 047
Author(s):  
A. Alexandrov ◽  
G. De Lellis ◽  
A. Di Crescenzo ◽  
A. Golovatiuk ◽  
V. Tioukov

Instruments ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 13
Author(s):  
Matthew Szydagis ◽  
Grant A. Block ◽  
Collin Farquhar ◽  
Alexander J. Flesher ◽  
Ekaterina S. Kozlova ◽  
...  

Detectors based upon the noble elements, especially liquid xenon as well as liquid argon, as both single- and dual-phase types, require reconstruction of the energies of interacting particles, both in the field of direct detection of dark matter (weakly interacting massive particles WIMPs, axions, etc.) and in neutrino physics. Experimentalists, as well as theorists who reanalyze/reinterpret experimental data, have used a few different techniques over the past few decades. In this paper, we review techniques based on solely the primary scintillation channel, the ionization or secondary channel available at non-zero drift electric fields, and combined techniques that include a simple linear combination and weighted averages, with a brief discussion of the application of profile likelihood, maximum likelihood, and machine learning. Comparing results for electron recoils (beta and gamma interactions) and nuclear recoils (primarily from neutrons) from the Noble Element Simulation Technique (NEST) simulation to available data, we confirm that combining all available information generates higher-precision means, lower widths (energy resolution), and more symmetric shapes (approximately Gaussian) especially at keV-scale energies, with the symmetry even greater when thresholding is addressed. Near thresholds, bias from upward fluctuations matters. For MeV-GeV scales, if only one channel is utilized, an ionization-only-based energy scale outperforms scintillation; channel combination remains beneficial. We discuss here what major collaborations use.


2019 ◽  
Vol 79 (12) ◽  
Author(s):  
G. Angloher ◽  
F. Ardellier-Desages ◽  
A. Bento ◽  
L. Canonica ◽  
A. Erhart ◽  
...  

AbstractCoherent elastic neutrino–nucleus scattering ($$\hbox {CE}\nu \hbox {NS}$$CEνNS) offers a unique way to study neutrino properties and to search for new physics beyond the Standard Model. Nuclear reactors are promising sources to explore this process at low energies since they deliver large fluxes of anti-neutrinos with typical energies of a few MeV. In this paper, a new-generation experiment to study $$\hbox {CE}\nu \hbox {NS}$$CEνNS is described. The NUCLEUS experiment will use cryogenic detectors which feature an unprecedentedly low-energy threshold and a time response fast enough to be operated under above-ground conditions. Both sensitivity to low-energy nuclear recoils and a high event rate tolerance are stringent requirements to measuring $$\hbox {CE}\nu \hbox {NS}$$CEνNS of reactor anti-neutrinos. A new experimental site, the Very-Near-Site (VNS), at the Chooz nuclear power plant in France is described. The VNS is located between the two 4.25 $$\hbox {GW}_{\mathrm {th}}$$GWth reactor cores and matches the requirements of NUCLEUS. First results of on-site measurements of neutron and muon backgrounds, the expected dominant background contributions, are given. In this paper a preliminary experimental set-up with dedicated active and passive background reduction techniques and first background estimations are presented. Furthermore, the feasibility to operate the detectors in coincidence with an active muon veto at shallow overburden is studied. The paper concludes with a sensitivity study pointing out the physics potential of NUCLEUS at the Chooz nuclear power plant.


2020 ◽  
Vol 200 (5-6) ◽  
pp. 428-436
Author(s):  
G. Angloher ◽  
P. Carniti ◽  
I. Dafinei ◽  
N. Di Marco ◽  
A. Fuss ◽  
...  

Abstract COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) is an experiment employing cryogenic calorimeters, dedicated to direct dark matter search in underground laboratories. Its goal is to cross-check the annual modulation signal the DAMA collaboration has been detecting for about 20 years (Bernabei et al. in Nucl Part Phys Proc 303–305:74–79, 2018. 10.1016/j.nuclphysbps.2019.03.015) and which has been ruled out by other experiments in certain dark matter scenarios. COSINUS can provide a model-independent test by the use of the same target material (NaI), with the additional chance of discriminating $$\beta /\gamma$$ β / γ events from nuclear recoils on an event-by-event basis, by the application of a well-established temperature sensor technology developed within the CRESST collaboration. Each module is constituted by two detectors: the light detector, that is a silicon beaker equipped with a transition edge sensor (TES), and the phonon detector, a small cubic NaI crystal interfaced with a carrier of a harder material (e.g. $$\hbox {CdWO}_4$$ CdWO 4 ), also instrumented with a TES. This technology had so far never been applied to NaI crystals because of several well-known obstacles, and COSINUS is the first experiment which succeeded in operating NaI crystals as cryogenic calorimeters. Here, we present the COSINUS project, describe the achievements and the challenges of the COSINUS prototype development and discuss the status and the perspectives of this NaI-based cryogenic frontier.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
J. D. Vergados ◽  
Ch. C. Moustakidis ◽  
Yeuk-Kwan E. Cheung ◽  
H. Ejiri ◽  
Yeongduk Kim ◽  
...  

In the present work we examine the possibility of detecting electrons in light dark matter searches. These detectors are considered to be the most appropriate for detecting dark matter particles with a mass in the MeV region. We analyze theoretically some key issues involved in such detection. More specifically we consider a particle model involving WIMPs interacting with fermions via Z-exchange. We find that for WIMPs with mass in the electron mass range the cross section for WIMP-atomic electron scattering is affected by the electron binding. For WIMPs more than 20 times heavier than the electron, the binding affects the kinematics very little. As a result, many electrons can be ejected with energy which increases linearly with the WIMP mass, but the cross section is somewhat reduced depending on the bound state wave function employed. On the other hand for lighter WIMPs, the effect of binding is dramatic. More specifically at most 10 electrons, namely, those with binding energy below 10 eV, become available even in the case of WIMPs with a mass as large as 20 times the electron mass. Even fewer electrons contribute if the WIMPs are lighter. The cross section is, however, substantially enhanced by the Fermi function corrections, which become more important at low energies of the outgoing electrons. Thus events of 0.5–2.5 per kg-y become possible.


2004 ◽  
Vol 19 (19) ◽  
pp. 3093-3169 ◽  
Author(s):  
CARLOS MUÑOZ

The existence of dark matter was suggested, using simple gravitational arguments, seventy years ago. Although we are now convinced that most of the mass in the Universe is indeed some nonluminous matter, we still do not know its composition. The problem of the dark matter in the Universe is reviewed here. Particle candidates for dark matter are discussed with particular emphasis on Weakly Interacting Massive Particles (WIMP's). Experiments searching for these relic particles, carried out by many groups around the world, are also reviewed, paying special attention to their direct detection by observing the elastic scattering on target nuclei through nuclear recoils. Finally, we concentrate on the theoretical models predicting WIMP's, and in particular on supersymmetric extensions of the standard model, where the leading candidate for WIMP, the neutralino, is present. There, we compute the cross-section for the direct detection of neutralinos, and compare it with the sensitivity of detectors. We mainly discuss supergravity, superstring and M theory scenarios.


1995 ◽  
Vol 3 (4) ◽  
pp. 361-366 ◽  
Author(s):  
Y. Messous ◽  
B. Chambon ◽  
V. Chazal ◽  
M. De Jésus ◽  
D. Drain ◽  
...  
Keyword(s):  

2017 ◽  
Vol 96 (4) ◽  
Author(s):  
E. Aprile ◽  
J. Aalbers ◽  
F. Agostini ◽  
M. Alfonsi ◽  
F. D. Amaro ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document