Integer multiple spiking in neuronal pacemakers without external periodic stimulation

2001 ◽  
Vol 285 (1-2) ◽  
pp. 63-68 ◽  
Author(s):  
Huaguang Gu ◽  
Wei Ren ◽  
Qishao Lu ◽  
Shunguang Wu ◽  
Minghao Yang ◽  
...  
1997 ◽  
Vol 36 (04/05) ◽  
pp. 290-293
Author(s):  
L. Glass ◽  
T. Nomura

Abstract:Excitable media, such as nerve, heart and the Belousov-Zhabo- tinsky reaction, exhibit a large excursion from equilibrium in response to a small but finite perturbation. Assuming a one-dimensional ring geometry of sufficient length, excitable media support a periodic wave of circulation. As in the periodic stimulation of oscillations in ordinary differential equations, the effects of periodic stimuli of the periodically circulating wave can be described by a one-dimensional Poincaré map. Depending on the period and intensity of the stimulus as well as its initial phase, either entrainment or termination of the original circulating wave is observed. These phenomena are directly related to clinical observations concerning periodic stimulation of a class of cardiac arrhythmias caused by reentrant wave propagation in the human heart.


AIP Advances ◽  
2014 ◽  
Vol 4 (10) ◽  
pp. 107107 ◽  
Author(s):  
Suhyun Kim ◽  
Younheum Jung ◽  
Joong Jung Kim ◽  
Sunyoung Lee ◽  
Haebum Lee ◽  
...  

2009 ◽  
Vol 19 (05) ◽  
pp. 1709-1732 ◽  
Author(s):  
B. M. BAKER ◽  
M. E. KIDWELL ◽  
R. P. KLINE ◽  
I. POPOVICI

We study the orbits, stability and coexistence of orbits in the two-dimensional dynamical system introduced by Kline and Baker to model cardiac rhythmic response to periodic stimulation — as a function of (a) kinetic parameters (two amplitudes, two rate constants) and (b) stimulus period. The original paper focused mostly on the one-dimensional version of this model (one amplitude, one rate constant), whose orbits, stability properties, and bifurcations were analyzed via the theory of skew-tent (hence unimodal) maps; the principal family of orbits were so-called "n-escalators", with n a positive integer. The two-dimensional analog (motivated by experimental results) has led to the current study of continuous, piecewise smooth maps of a polygonal planar region into itself, whose dynamical behavior includes the coexistence of stable orbits. Our principal results show (1) how the amplitude parameters control which escalators can come into existence, (2) escalator bifurcation behavior as the stimulus period is lowered — leading to a "1/n bifurcation law", and (3) the existence of basins of attraction via the coexistence of three orbits (two of them stable, one unstable) at the first (largest stimulus period) bifurcation. We consider the latter result our most important, as it is conjectured to be connected with arrhythmia.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 430
Author(s):  
Jianhua Wu ◽  
Xiaofeng Zhang ◽  
Liang Chen

Acousto-optic modulator (AOM) and electro-optical modulator (EOM) are applied to realize the all-fiber current sensor with a pulsed light source. The pulsed light is realized by amplitude modulation with AOM. The reflected interferometer current sensor is constructed by the mirror and phase modulation with EOM to improve the anti-interference ability. A correlation demodulation algorithm is applied for data processing. The influence of the modulation frequency and duty cycle of AOM on the optical system is determined by modeling and experiment. The duty cycle is the main factor affecting the normalized scale factor of the system. The modulation frequency mainly affects the output amplitude of the correlation demodulation and the system signal-to-noise ratio. The frequency multiplication factor links AOM and EOM, primarily affecting the ratio error. When the frequency multiplication factor is equal to the duty cycle of AOM and it is an integer multiple of 0.1, the ratio error of the system is less than 1.8% and the sensitivity and the resolution of AFOCS are 0.01063 mV/mA and 3 mA, respectively. The measurement range of AFOCS is from 11 mA to 196.62 A, which is excellent enough to meet the practical requirements for microcurrent measurement.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Eric Goles ◽  
Ivan Slapničar ◽  
Marco A. Lardies

Real-world examples of periodical species range from cicadas, whose life cycles are large prime numbers, like 13 or 17, to bamboos, whose periods are large multiples of small primes, like 40 or even 120. The periodicity is caused by interaction of species, be it a predator-prey relationship, symbiosis, commensalism, or competition exclusion principle. We propose a simple mathematical model, which explains and models all those principles, including listed extremal cases. This rather universal, qualitative model is based on the concept of a local fitness function, where a randomly chosen new period is selected if the value of the global fitness function of the species increases. Arithmetically speaking, the different interactions are related to only four principles: given a couple of integer periods either (1) their greatest common divisor is one, (2) one of the periods is prime, (3) both periods are equal, or (4) one period is an integer multiple of the other.


2012 ◽  
Vol 198 (6) ◽  
pp. 1075-1091 ◽  
Author(s):  
Nachiket D. Kashikar ◽  
Luis Alvarez ◽  
Reinhard Seifert ◽  
Ingo Gregor ◽  
Oliver Jäckle ◽  
...  

Sperm, navigating in a chemical gradient, are exposed to a periodic stream of chemoattractant molecules. The periodic stimulation entrains Ca2+ oscillations that control looping steering responses. It is not known how sperm sample chemoattractant molecules during periodic stimulation and adjust their sensitivity. We report that sea urchin sperm sampled molecules for 0.2–0.6 s before a Ca2+ response was produced. Additional molecules delivered during a Ca2+ response reset the cell by causing a pronounced Ca2+ drop that terminated the response; this reset was followed by a new Ca2+ rise. After stimulation, sperm adapted their sensitivity following the Weber–Fechner law. Taking into account the single-molecule sensitivity, we estimate that sperm can register a minimal gradient of 0.8 fM/µm and be attracted from as far away as 4.7 mm. Many microorganisms sense stimulus gradients along periodic paths to translate a spatial distribution of the stimulus into a temporal pattern of the cell response. Orchestration of temporal sampling, resetting, and adaptation might control gradient sensing in such organisms as well.


1970 ◽  
Vol 21 (1) ◽  
pp. 18-48 ◽  
Author(s):  
C. W. Stammers

SummaryThe nature of flapping torsion flutter of a helicopter blade in forward flight is discussed. The essential complication in the analysis is the presence of periodic coefficients in the equations of motion; approximate solutions are obtained by use of a perturbation procedure. An unusual behaviour of the flutter equations which occurs when the fundamental frequency of flutter is a half-integer multiple of rotational speed is studied. Two different instability mechanisms can be distinguished and are related to the two energy sources in the system, namely the rotation of the rotor and the forward speed of the helicopter. It is found that forward flight can have a significant stabilising influence on flutter and that, as the tip speed ratio increases, flutter occurs predominantly at half-integer frequencies. The results are confirmed by the use of a numerical method.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
M. Ashrafi

Abstract In this paper, we study mathematical functions of relevance to pure gravity in AdS3. Modular covariance places stringent constraints on the space of such functions; modular invariance places even stronger constraints on how they may be combined into physically viable candidate partition functions. We explicitly detail the list of holomorphic and anti-holomorphic functions that serve as candidates for chiral and anti-chiral partition functions and note that modular covariance is only consistent with such functions when the left (resp. right) central charge is an integer multiple of 8, c ∈ 8ℕ. We then find related constraints on the symmetry group of the corresponding topological, Chern-Simons, theory in the bulk of AdS. The symmetry group of the theory can be one of two choices: either SO(2; 1) × SO(2; 1) or its three-fold diagonal cover. We introduce the generalized Hecke operators which map the modular covariant functions to the modular covariant functions. With these mathematical results, we obtain conjectural partition functions for extremal CFT2s, and the corresponding microcanonical entropies, when the chiral central charges are multiples of eight. Finally, we compute subleading corrections to the Beckenstein-Hawking entropy in the bulk gravitational theory with these conjectural partition functions.


Sign in / Sign up

Export Citation Format

Share Document