scholarly journals Three dimensional pure gravity and generalized Hecke operators

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
M. Ashrafi

Abstract In this paper, we study mathematical functions of relevance to pure gravity in AdS3. Modular covariance places stringent constraints on the space of such functions; modular invariance places even stronger constraints on how they may be combined into physically viable candidate partition functions. We explicitly detail the list of holomorphic and anti-holomorphic functions that serve as candidates for chiral and anti-chiral partition functions and note that modular covariance is only consistent with such functions when the left (resp. right) central charge is an integer multiple of 8, c ∈ 8ℕ. We then find related constraints on the symmetry group of the corresponding topological, Chern-Simons, theory in the bulk of AdS. The symmetry group of the theory can be one of two choices: either SO(2; 1) × SO(2; 1) or its three-fold diagonal cover. We introduce the generalized Hecke operators which map the modular covariant functions to the modular covariant functions. With these mathematical results, we obtain conjectural partition functions for extremal CFT2s, and the corresponding microcanonical entropies, when the chiral central charges are multiples of eight. Finally, we compute subleading corrections to the Beckenstein-Hawking entropy in the bulk gravitational theory with these conjectural partition functions.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Nima Afkhami-Jeddi ◽  
Henry Cohn ◽  
Thomas Hartman ◽  
Amirhossein Tajdini

Abstract We study the torus partition functions of free bosonic CFTs in two dimensions. Integrating over Narain moduli defines an ensemble-averaged free CFT. We calculate the averaged partition function and show that it can be reinterpreted as a sum over topologies in three dimensions. This result leads us to conjecture that an averaged free CFT in two dimensions is holographically dual to an exotic theory of three-dimensional gravity with U(1)c×U(1)c symmetry and a composite boundary graviton. Additionally, for small central charge c, we obtain general constraints on the spectral gap of free CFTs using the spinning modular bootstrap, construct examples of Narain compactifications with a large gap, and find an analytic bootstrap functional corresponding to a single self-dual boson.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Nikolay Bobev ◽  
Anthony M. Charles ◽  
Dongmin Gang ◽  
Kiril Hristov ◽  
Valentin Reys

Abstract We study the interplay between four-derivative 4d gauged supergravity, holography, wrapped M5-branes, and theories of class $$ \mathrm{\mathcal{R}} $$ ℛ . Using results from Chern-Simons theory on hyperbolic three-manifolds and the 3d-3d correspondence we are able to constrain the two independent coefficients in the four-derivative supergravity Lagrangian. This in turn allows us to calculate the subleading terms in the large-N expansion of supersymmetric partition functions for an infinite class of three-dimensional $$ \mathcal{N} $$ N = 2 SCFTs of class $$ \mathrm{\mathcal{R}} $$ ℛ . We also determine the leading correction to the Bekenstein-Hawking entropy of asymptotically AdS4 black holes arising from wrapped M5-branes. In addition, we propose and test some conjectures about the perturbative partition function of Chern-Simons theory with complexified ADE gauge groups on closed hyperbolic three-manifolds.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Meer Ashwinkumar ◽  
Matthew Dodelson ◽  
Abhiram Kidambi ◽  
Jacob M. Leedom ◽  
Masahito Yamazaki

Abstract We discuss ensemble averages of two-dimensional conformal field theories associated with an arbitrary indefinite lattice with integral quadratic form Q. We provide evidence that the holographic dual after the ensemble average is the three-dimensional Abelian Chern-Simons theory with kinetic term determined by Q. The resulting partition function can be written as a modular form, expressed as a sum over the partition functions of Chern-Simons theories on lens spaces. For odd lattices, the dual bulk theory is a spin Chern-Simons theory, and we identify several novel phenomena in this case. We also discuss the holographic duality prior to averaging in terms of Maxwell-Chern-Simons theories.


1992 ◽  
Vol 07 (23) ◽  
pp. 2065-2076 ◽  
Author(s):  
S. KALYANA RAMA ◽  
SIDDHARTHA SEN

We show how the Turaev-Viro invariant, which is closely related to the partition function of three-dimensional gravity, can be understood within the framework of SU(2) Chern-Simons theory. We also show that, for S3 and RP3, this invariant is equal to the absolute value square of their respective partition functions in SU(2) Chern-Simons theory and give a method of evaluating the latter in a closed form for a class of 3D manifolds, thus in effect obtaining the partition function of three-dimensional gravity for these manifolds. By interpreting the triangulation of a manifold as a graph consisting of crossings and vertices with three lines we also describe a new invariant for certain class of graphs.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Masazumi Honda ◽  
Naotaka Kubo

Abstract It has been conjectured that duality cascade occurs in the $$ \mathcal{N} $$ N = 3 supersymmetric Yang-Mills Chern-Simons theory with the gauge group U(N)k × U(N + M)−k coupled to two bi-fundamental hypermultiplets. The brane picture suggests that this duality cascade can be generalized to a class of 3d $$ \mathcal{N} $$ N = 3 supersymmetric quiver gauge theories coming from so-called Hanany-Witten type brane configurations. In this paper we perform non-perturbative tests of the duality cascades using supersymmetry localization. We focus on S3 partition functions and prove predictions from the duality cascades. We also discuss that our result can be applied to generate new dualities for more general theories which include less supersymmetric theories and theories without brane constructions.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Naotaka Kubo

Abstract It is known that matrix models computing the partition functions of three-dimensional $$ \mathcal{N} $$ N = 4 superconformal Chern-Simons theories described by circular quiver diagrams can be written as the partition functions of ideal Fermi gases when all the nodes have equal ranks. We extend this approach to rank deformed theories. The resulting matrix models factorize into factors depending only on the relative ranks in addition to the Fermi gas factors. We find that this factorization plays a critical role in showing the equality of the partition functions of dual theories related by the Hanany-Witten transition. Furthermore, we show that the inverses of the density matrices of the ideal Fermi gases can be simplified and regarded as quantum curves as in the case without rank deformations. We also comment on four nodes theories using our results.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Young Kim ◽  
Michael D. Han ◽  
Kug Jin Jeon ◽  
Jong-Ki Huh ◽  
Kwang-Ho Park

Abstract Background The purpose of this study was to investigate the differences in configuration and dimensions of the anterior loop of the inferior alveolar nerve (ALIAN) in patients with and without mandibular asymmetry. Method Preoperative computed tomography images of patients who had undergone orthognathic surgery from January 2016 to December 2018 at a single institution were analyzed. Subjects were classified into two groups as “Asymmetry group” and “Symmetry group”. The distance from the most anterior and most inferior points of the ALIAN (IANant and IANinf) to the vertical and horizontal reference planes were measured (dAnt and dInf). The distance from IANant and IANinf to the mental foramen were also calculated (dAnt_MF and dInf_MF). The length of the mandibular body and symphysis area were measured. All measurements were analyzed using 3D analysis software. Results There were 57 total eligible subjects. In the Asymmetry group, dAnt and dAnt_MF on the non-deviated side were significantly longer than the deviated side (p < 0.001). dInf_MF on the non-deviated side was also significantly longer than the deviated side (p = 0.001). Mandibular body length was significantly longer on the non-deviated side (p < 0.001). There was no significant difference in length in the symphysis area (p = 0.623). In the Symmetry group, there was no difference between the left and right sides for all variables. Conclusion In asymmetric patients, there is a difference tendency in the ALIAN between the deviated and non-deviated sides. In patients with mandibular asymmetry, this should be considered during surgery in the anterior mandible.


Sign in / Sign up

Export Citation Format

Share Document