Observation of fluctuating electron temperature induced by m=0 global Alfvén eigenmode excited in a current-carrying plasma

2003 ◽  
Vol 312 (5-6) ◽  
pp. 380-384
Author(s):  
Takanori Hishida ◽  
Yoshimitsu Amagishi
1969 ◽  
Vol 1 (5) ◽  
pp. 216-217
Author(s):  
A. E. Le Marne ◽  
P. A. Shaver

In a current programme at the Molonglo Radio Observatory using the high-resolution pencil beam of the instrument (∼3′ arc) an attempt is being made to extend the measured spectra of known planetary nebulae down to 408 MHz. Of 23 such planetaries already investigated, 14 have been detected. The main results will be given elsewhere; here it is proposed to discuss in detail only the well-known planetary nebula IC 418.


2013 ◽  
Vol 347-350 ◽  
pp. 55-58
Author(s):  
Yong Li ◽  
Rui Zhang ◽  
Jian Hua Zong

A current-model Triple Langmuir probe was developed and used to measure electron temperature and density of the Pulsed Plasma Thruster plume. To decreasing the errors in measurement, Probe, collection circuit and glow cleaning devices were elaborately designed. A FIR digital Filter based on Matlab was designed and the software for date processing was developed by Labview. Measurements were taken at various position in the plume of a Pulsed Plasma Thruster operating at discharge energy of 6-24J. The results show the thruster plume has electron temperatures in the range between 0.6and 5.4eV, electron densities between 0.9×1019 and 4.1x1021m-3 for all discharge energy levels considered. Electron temperature and density decrease with increasing angle away from the centerline and with decreasing discharge energy.


2009 ◽  
Vol 27 (1) ◽  
pp. 395-405 ◽  
Author(s):  
K. G. Tanaka ◽  
K. Haijima ◽  
M. Fujimoto ◽  
I. Shinohara

Abstract. How to trigger magnetic reconnection is one of the most interesting and important problems in space plasma physics. Recently, electron temperature anisotropy (αeo=Te⊥/Te||) at the center of a current sheet and non-local effect of the lower-hybrid drift instability (LHDI) that develops at the current sheet edges have attracted attention in this context. In addition to these effects, here we also study the effects of ion temperature anisotropy (αio=Ti⊥/Ti||). Electron anisotropy effects are known to be helpless in a current sheet whose thickness is of ion-scale. In this range of current sheet thickness, the LHDI effects are shown to weaken substantially with a small increase in thickness and the obtained saturation level is too low for a large-scale reconnection to be achieved. Then we investigate whether introduction of electron and ion temperature anisotropies in the initial stage would couple with the LHDI effects to revive quick triggering of large-scale reconnection in a super-ion-scale current sheet. The results are as follows. (1) The initial electron temperature anisotropy is consumed very quickly when a number of minuscule magnetic islands (each lateral length is 1.5~3 times the ion inertial length) form. These minuscule islands do not coalesce into a large-scale island to enable large-scale reconnection. (2) The subsequent LHDI effects disturb the current sheet filled with the small islands. This makes the triggering time scale to be accelerated substantially but does not enhance the saturation level of reconnected flux. (3) When the ion temperature anisotropy is added, it survives through the small island formation stage and makes even quicker triggering to happen when the LHDI effects set-in. Furthermore the saturation level is seen to be elevated by a factor of ~2 and large-scale reconnection is achieved only in this case. Comparison with two-dimensional simulations that exclude the LHDI effects confirms that the saturation level enhancement is due to the ion anisotropy effects, while the LHDI effects shorten the overall time scale significantly. The results imply that the ion temperature anisotropy is one of the key properties that enable large-scale magnetic reconnection to develop in a super-ion-scale current sheet.


Author(s):  
R.A. Ploc

The optic axis of an electron microscope objective lens is usually assumed to be straight and co-linear with the mechanical center. No reason exists to assume such perfection and, indeed, simple reasoning suggests that it is a complicated curve. A current centered objective lens with a non-linear optic axis when used in conjunction with other lenses, leads to serious image errors if the nature of the specimen is such as to produce intense inelastic scattering.


Author(s):  
L. E. Murr ◽  
G. Wong

Palladium single-crystal films have been prepared by Matthews in ultra-high vacuum by evaporation onto (001) NaCl substrates cleaved in-situ, and maintained at ∼ 350° C. Murr has also produced large-grained and single-crystal Pd films by high-rate evaporation onto (001) NaCl air-cleaved substrates at 350°C. In the present work, very large (∼ 3cm2), continuous single-crystal films of Pd have been prepared by flash evaporation onto air-cleaved (001) NaCl substrates at temperatures at or below 250°C. Evaporation rates estimated to be ≧ 2000 Å/sec, were obtained by effectively short-circuiting 1 mil tungsten evaporation boats in a self-regulating system which maintained an optimum load current of approximately 90 amperes; corresponding to a current density through the boat of ∼ 4 × 104 amperes/cm2.


Author(s):  
Takao Suzuki ◽  
Hossein Nuri

For future high density magneto-optical recording materials, a Bi-substituted garnet film ((BiDy)3(FeGa)5O12) is an attractive candidate since it has strong magneto-optic effect at short wavelengths less than 600 nm. The signal in read back performance at 500 nm using a garnet film can be an order of magnitude higher than a current rare earth-transition metal amorphous film. However, the granularity and surface roughness of such crystalline garnet films are the key to control for minimizing media noise.We have demonstrated a new technique to fabricate a garnet film which has much smaller grain size and smoother surfaces than those annealed in a conventional oven. This method employs a high ramp-up rate annealing (Γ = 50 ~ 100 C/s) in nitrogen atmosphere. Fig.1 shows a typical microstruture of a Bi-susbtituted garnet film deposited by r.f. sputtering and then subsequently crystallized by a rapid thermal annealing technique at Γ = 50 C/s at 650 °C for 2 min. The structure is a single phase of garnet, and a grain size is about 300A.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


Author(s):  
A. Yamanaka ◽  
H. Ohse ◽  
K. Yagi

Recently current effects on clean and metal adsorbate surfaces have attracted much attention not only because of interesting phenomena but also because of practically importance in treatingclean and metal adsorbate surfaces [1-6]. In the former case, metals deposited migrate on the deposit depending on the current direction and a patch of the deposit expands on the clean surface [1]. The migration is closely related to the adsorbate structures and substrate structures including their anisotropy [2,7]. In the latter case, configurations of surface atomic steps depends on the current direction. In the case of Si(001) surface equally spaced array of monatom high steps along the [110] direction produces the 2x1 and 1x2 terraces. However, a relative terrace width of the two domain depends on the current direction; a step-up current widen terraces on which dimers are parallel to the current, while a step-down current widen the other terraces [3]. On (111) surface, a step-down current produces step bunching at temperatures between 1250-1350°C, while a step-up current produces step bunching at temperatures between 1050-1250°C [5].In the present paper, our REM observations on a current induced step bunching, started independently, are described.Our results are summarized as follows.(1) Above around 1000°C a step-up current induces step bunching. The phenomenon reverses around 1200 C; a step-down current induces step bunching. The observations agree with the previous reports [5].


2021 ◽  
Author(s):  
Minmin Wang ◽  
Mengke Zhang ◽  
Wenwu Song ◽  
Weiting Zhong ◽  
Xunyue Wang ◽  
...  

A CoMo2S4/Ni3S2 heterojunction is prepared with an overpotential of only 51 mV to drive a current density of 10 mA cm−2 in 1 M KOH solution and ∼100% of the potential remains in the ∼50 h chronopotentiometric curve at 10 mA cm−2.


1991 ◽  
Vol 22 (2) ◽  
pp. 51-59 ◽  
Author(s):  
Kathy L. Coufal ◽  
Allen L. Steckelberg ◽  
Stanley F. Vasa

Administrators of programs for children with communicative disorders in 11 midwestern states were surveyed to assess trends in the training and utilization of paraprofessionals. Topics included: (a) current trends in employment, (b) paraprofessional training, (c) use of ASHA and state guidelines, and (d) district policies for supervision. Selection criteria, use of job descriptions, training programs, and supervision practices and policies were examined. Results indicate that paraprofessionals are used but that standards for training and supervision are not consistently applied across all programs. Program administrators report minimal training for supervising professionals.


Sign in / Sign up

Export Citation Format

Share Document