A Kerr black hole in the external gravitational field

1997 ◽  
Vol 230 (1-2) ◽  
pp. 7-11 ◽  
Author(s):  
Nora Bretón ◽  
Tatiana E. Denisova ◽  
Vladimir S. Manko
Author(s):  
Bo Gao ◽  
Xue-Mei Deng

The neutral time-like particle’s bound orbits around modified Hayward black holes have been investigated. We find that both in the marginally bound orbits (MBO) and the innermost stable circular orbits (ISCO), the test particle’s radius and its angular momentum are all more sensitive to one of the parameters [Formula: see text]. Especially, modified Hayward black holes with [Formula: see text] could mimic the same ISCO radius around the Kerr black hole with the spin parameter up to [Formula: see text]. Small [Formula: see text] could mimic the ISCO of small-spinning test particles around Schwarzschild black holes. Meanwhile, rational (periodic) orbits around modified Hayward black holes have also been studied. The epicyclic frequencies of the quasi-circular motion around modified Hayward black holes are calculated and discussed with respect to the observed Quasi-periodic oscillations (QPOs) frequencies. Our results show that rational orbits around modified Hayward black holes have different values of the energy from the ones of Schwarzschild black holes. The epicyclic frequencies in modified Hayward black holes have different frequencies from Schwarzschild and Kerr ones. These might provide hints for distinguishing modified Hayward black holes from Schwarzschild and Kerr ones by using the dynamics of time-like particles around the strong gravitational field.


2015 ◽  
Vol 91 (6) ◽  
Author(s):  
Shohreh Abdolrahimi ◽  
Jutta Kunz ◽  
Petya Nedkova

2010 ◽  
Author(s):  
Reinhard Horst Beyer ◽  
H. A. Morales-Tecotl ◽  
L. A. Urena-Lopez ◽  
R. Linares-Romero ◽  
H. H. Garcia-Compean

This paper concerns itself with the possibility of thermal equilibrium between a black hole and a heat bath implied by Hawking’s discovery of black hole emission. We argue that in an isolated box of radiation, for sufficiently high energy density a black hole will condense out. We introduce thermal Green functions to discuss this equilibrium and are able to extend the original arguments, that the equilibrium is possible based on fields interacting solely with the external gravitational field, to the case when mutual and self interactions are included.


2017 ◽  
Vol 57 (2) ◽  
Author(s):  
Stanislav Komarov ◽  
Alexander Gorbatsievich ◽  
Alexander Tarasenko

A compact binary star that moves in a strong external gravitational field of a Schwarzschild black hole is considered. Decomposition of the redshift into a series with respect to the size of the binary system is obtained. This expression is used to calculate the redshift for a model binary system. Possible application of the results is discussed.


2001 ◽  
Vol 10 (06) ◽  
pp. 961-969 ◽  
Author(s):  
LONG-LONG FENG ◽  
WOLUNG LEE

In this paper, we present an investigation of the Berry phase that a photon acquired during its propagating through a gravitational field produced by a Kerr black hole. Starting from the Maxwell equation in Kerr–Schild metric form of Kerr black hole, we give the zeroth order Hamiltonian of the photon under geometric optics approximation. The helicity state of the photon is then derived. We demonstrate that there are two factors leading to the Berry phase that the photon acquires in a gravitational field. These are the adiabatic transport of the local comoving tetrad and the rotation of the equivalent magnetic field that we introduce. The straightforward calculation show that the appearance of Berry phase is attributed to the twisted optical path due to the rotation of black hole. It is in fact analogous to the observed optical rotation for a linear polarized light propagating in an helical optical fiber.


2001 ◽  
Vol 10 (6) ◽  
pp. 475-479 ◽  
Author(s):  
Wang Yong-jiu ◽  
Tang Zhi-ming

1988 ◽  
Vol 330 ◽  
pp. 168
Author(s):  
Shou-Ping Xiang ◽  
Tao Kiang ◽  
Jia-Lu Zhang

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Gamal G. L. Nashed

A new exact solution describing a general stationary and axisymmetric object of the gravitational field in the framework of teleparallel equivalent of general relativity (TEGR) is derived. The solution is characterized by three parameters “the gravitational massM, the rotationa, and the NUTL.” The vierbein field is axially symmetric, and the associated metric gives the Kerr-Taub-NUT spacetime. Calculation of the total energy using two different methods, the gravitational energy momentum and the Riemannian connection 1-formΓα̃β, is carried out. It is shown that the two methods give the same results of energy and momentum. The value of energy is shown to depend on the massMand the NUT parameterL. IfLis vanishing, then the total energy reduced to the energy of Kerr black hole.


Sign in / Sign up

Export Citation Format

Share Document