Influence of long-term dormant-season burning and fire exclusion on ground-dwelling arthropod populations in longleaf pine flatwoods ecosystems

2003 ◽  
Vol 175 (1-3) ◽  
pp. 163-184 ◽  
Author(s):  
James L Hanula ◽  
Dale D Wade
2021 ◽  
Vol 4 ◽  
Author(s):  
John L. Willis ◽  
Ajay Sharma ◽  
John S. Kush

Emulating natural disturbance has become an increasingly important restoration strategy. In the fire-maintained woodlands of the southeastern United States, contemporary restoration efforts have focused on approximating the historical fire regime by burning at short intervals. Due to concerns over escape and damage to mature trees, most prescribed burning has occurred in the dormant season, which is inconsistent with the historical prevalence of lightning-initiated fire in the region. This discordance between contemporary prescribed burning and what is thought to be the historical fire regime has led some to question whether dormant season burning should remain the most common management practice; however, little is known about the long-term effects of repeated growing season burning on the health and productivity of desirable tree species. To address this question, we report on a long-term experiment comparing the effects of seasonal biennial burning (winter, spring, and summer) and no burning on the final survival status, height, diameter, and volume growth of 892 mature longleaf pine (Pinus palustris) over 23 years in three mature even-aged stands in southern Alabama, United States. Overall, longleaf pine survival across all treatments averaged 81 ± 2% [s.e]. Among seasonal burn treatments, survival was highest in the spring burns (82 ± 4%) but did not vary significantly from any other treatment (summer – 79 ± 4%, winter – 81 ± 4%, unburned – 84 ± 4%). However, survival was statistically influenced by initial diameter at breast height, as survival of trees in the largest size class (30 cm) was 40% higher than trees in the smallest size class (5 cm). Productivity of longleaf pine was not significantly different among treatment averages in terms of volume (38.9–44.1 ± 6.0 m3 ha–1), diameter (6.0–6.7 ± 0.3 cm), and height (2.5–3.4 ± 0.4 m) growth. Collectively, our results demonstrate that burning outside the dormant season will have little impact on mature longleaf pine survival and growth. This finding has important implications for the maintenance of restored southeastern woodlands, as interest in burning outside the dormant season continues to grow.


2004 ◽  
Vol 13 (4) ◽  
pp. 443 ◽  
Author(s):  
L. R. Boring ◽  
J. J. Hendricks ◽  
C. A. Wilson ◽  
R. J. Mitchell

Fire regulates the structure and function of longleaf pine ecosystems, including potential nutrient controls on productivity, forest floor and groundcover nutrient pools, and nutrient availability. Little is known about comparative influences of seasonality of fire, litter types, and mass on N and P balance and soil processes in longleaf pine ecosystems. This study primarily addresses the hypothesis that nutrient volatilization during growing season burning, due to combustion of live biomass, exceeds losses from winter burning of standing dead plant litter. Summer and winter burns were conducted experimentally in different groundcover types with ambient, double-ambient and no litter loadings to contrast 2–3 years of litter accumulation with very low and high fuels. As a comparison, the seasonal burns were repeated with fuel and temperature measurements on sites that had actual fuel accumulations ranging from 1 to 3 years following the last fire. Peak fire temperatures and duration of burning were similar, but with high variation across groundcover types and seasons due to variation in fuel moisture content. The highest pine litter loadings produced maximum mineral soil/litter interface temperatures that never exceeded 700°C. Groundcovers without pine litter burned incompletely and with low temperatures. Biomass and N content were greater in summer groundcover than winter groundcover, and were greater in wiregrass than old-field groundcover. More N was lost from growing season burning as biomass had higher N in green foliage at that time. With ambient litter loadings, mass losses were 88–94% of total litter and groundcover. Percentages of N lost were comparable (80–90% across all groundcovers and seasons), but amounts of N lost were below that estimated to be replenished by legume N fixation and regional atmospheric deposition over a dormant season prescribed fire cycle. Net N balances with growing season fire were generally negative only if growing season burning was projected exclusively over the long-term. P content was not significantly different among groundcovers, but summer standing stocks were higher than winter. No P losses were detected with any experimental treatments and, following burning, all P was returned to soil pools, attributable to soil surface temperatures remaining largely below 700°C. We conclude that frequent, dormant season, or even variable season burning should not seriously deplete long-term nitrogen balance of longleaf pine ecosystems.


2017 ◽  
Vol 46 (5) ◽  
pp. 1020-1027 ◽  
Author(s):  
T. Adam Coates ◽  
Alex T. Chow ◽  
Donald L. Hagan ◽  
G. Geoff Wang ◽  
William C. Bridges ◽  
...  

2016 ◽  
Vol 15 (3) ◽  
pp. 431-447 ◽  
Author(s):  
Kenneth J. Erwin ◽  
Houston C. Chandler ◽  
John G. Palis ◽  
Thomas A. Gorman ◽  
Carola A. Haas

1980 ◽  
Vol 4 (2) ◽  
pp. 77-79
Author(s):  
Robert C. Sparks ◽  
Norwin E. Linnartz ◽  
Harold E. Harris

Abstract Pruning and thinning a young natural stand of longleaf pine (Pinus palustris Mill.) in southwest Louisiana had little influence on height. However, diameter growth was reduced substantially as pruning intensity or stocking rate increased up to 25-percent live crown and 200 stems per acre, respectively. Improved diameter growth at lower stocking rates was not sufficient to equal the total basal area increment of 200 trees per acre.


1993 ◽  
Vol 17 (1) ◽  
pp. 10-15 ◽  
Author(s):  
William D. Boyer

Abstract Well-stocked mature longleaf pine (Pinus palustris Mill.) stands were cut to five residual basal areas in 1957, namely 9, 18, 27, 36, and 45 ft² per ac, to observe the effect of stand density on seed production and seedling establishment. Seedlings, mainly from the 1955 or 1961seed crops, were established in treated stands. All pines on net 0.9 ac plots were remeasured in 1991 to determine the effect of residual pine density on development of the regeneration. Even the lightest residual overstory converted the structure of 29- to 35- yr-old ingrowth into the reverse-Jdiameter class distribution characteristic of uneven-aged stands. Four or six residual trees, now comprising 7 to 10 ft² basal area (ba)/ac, reduced ingrowth basal area to about half that of same-aged stands released from overstory competition. Merchantable volume of ingrowth under theselow residual densities averaged 40% of that in released stands. Mean annual per ac volume increment of ingrowth averaged 21 to 22 ft³ under the 9 ft² density but did not exceed 7 ft³ under any residual density above this. The potential impact of significant growth reductionsshould be taken into account when considering uneven-aged management methods for longleaf pine. South. J. Appl. For. 17(1):10-15.


2020 ◽  
Vol 50 (7) ◽  
pp. 624-635
Author(s):  
Patrick J. Curtin ◽  
Benjamin O. Knapp ◽  
Steven B. Jack ◽  
Lance A. Vickers ◽  
David R. Larsen ◽  
...  

Recent interest in continuous cover forest management of longleaf pine (Pinus palustris Mill.) ecosystems raises questions of long-term sustainability because of uncertainty in rates of canopy recruitment of longleaf pine trees. We destructively sampled 130 naturally regenerated, midstory longleaf pines across an 11 300 ha, second-growth longleaf pine landscape in southwestern Georgia, United States, to reconstruct individual tree height growth patterns. We tested effects of stand density (using a competition index) and site quality (based on two site classifications: mesic and xeric) on height growth and demographics of midstory trees. We also compared height growth of paired midstory and overstory trees to infer stand regeneration and recruitment dynamics. In low-density stands, midstory trees were younger and grew at greater rates than trees within high-density stands. Midstory trees in low-density stands were mostly from a younger regeneration cohort than their paired overstory trees, whereas midstory–overstory pairs in high-density stands were mostly of the same cohort. Our results highlight the importance of releasing midstory longleaf pine trees from local competition for sustained height growth in partial-harvesting management systems. They also demonstrate patterns of long-term persistence in high-density stands, indicating flexibility in the canopy recruitment process of this shade-intolerant tree species.


Sign in / Sign up

Export Citation Format

Share Document