Rectification of random motion by asymmetric polymerization

1999 ◽  
Vol 271 (1-2) ◽  
pp. 48-62 ◽  
Author(s):  
R. Sambeth ◽  
A. Baumgaertner
Sensors ◽  
2016 ◽  
Vol 16 (3) ◽  
pp. 342 ◽  
Author(s):  
Kristen Warren ◽  
Joshua Harvey ◽  
Ki Chon ◽  
Yitzhak Mendelson
Keyword(s):  

Author(s):  
Manish Kumar ◽  
Devendra P. Garg ◽  
Randy Zachery

This paper investigates the effectiveness of designed random behavior in cooperative formation control of multiple mobile agents. A method based on artificial potential functions provides a framework for decentralized control of their formation. However, it implies heavy communication costs. The communication requirement can be replaced by onboard sensors. The onboard sensors have limited range and provide only local information, and may result in the formation of isolated clusters. This paper proposes to introduce a component representing random motion in the artificial potential function formulation of the formation control problem. The introduction of the random behavior component results in a better chance of global cluster formation. The paper uses an agent model that includes both position and orientation, and formulates the dynamic equations to incorporate that model in artificial potential function approach. The effectiveness of the proposed method is verified via extensive simulations performed on a group of mobile agents and leaders.


2007 ◽  
Vol 189 (23) ◽  
pp. 8704-8707 ◽  
Author(s):  
Peter Galajda ◽  
Juan Keymer ◽  
Paul Chaikin ◽  
Robert Austin

ABSTRACT Randomly moving but self-propelled agents, such as Escherichia coli bacteria, are expected to fill a volume homogeneously. However, we show that when a population of bacteria is exposed to a microfabricated wall of funnel-shaped openings, the random motion of bacteria through the openings is rectified by tracking (trapping) of the swimming bacteria along the funnel wall. This leads to a buildup of the concentration of swimming cells on the narrow opening side of the funnel wall but no concentration of nonswimming cells. Similarly, we show that a series of such funnel walls functions as a multistage pump and can increase the concentration of motile bacteria exponentially with the number of walls. The funnel wall can be arranged along arbitrary shapes and cause the bacteria to form well-defined patterns. The funnel effect may also have implications on the transport and distribution of motile microorganisms in irregular confined environments, such as porous media, wet soil, or biological tissue, or act as a selection pressure in evolution experiments.


1987 ◽  
Vol 19 (10) ◽  
pp. 1183-1190 ◽  
Author(s):  
Yoshio Okamoto ◽  
Eiji Yashima ◽  
Motoshi Ishikura ◽  
Koichi Hatada

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Chen Zhang ◽  
Sunyoung Jang ◽  
Ovid C. Amadi ◽  
Koichi Shimizu ◽  
Richard T. Lee ◽  
...  

Existing chemotaxis assays do not generate stable chemotactic gradients and thus—over time—functionally measure only nonspecific random motion (chemokinesis). In comparison, microfluidic technology has the capacity to generate a tightly controlled microenvironment that can be stably maintained for extended periods of time and is, therefore, amenable to adaptation for assaying chemotaxis. We describe here a novel microfluidic device for sensitive assay of cellular migration and show its application for evaluating the chemotaxis of smooth muscle cells in a chemokine gradient.


2011 ◽  
Vol 403-408 ◽  
pp. 2593-2597
Author(s):  
Hong Bao ◽  
Zhi Min Liu

In the analysis of human motion, movement was divided into regular motion (such as walking and running) and random motion (such as falling down).Human skeleton model is used in this paper to do the video-based analysis. Key joints on human body were chosen to be traced instead of tracking the entire human body. Shape features like mass center trajectory were used to describe the movement, and to classify human motion. desired results achieved.


1989 ◽  
Vol 21 (7) ◽  
pp. 543-549 ◽  
Author(s):  
Yoshio Okamoto ◽  
Hiromi Hayashida ◽  
Koichi Hatada

Sign in / Sign up

Export Citation Format

Share Document