scholarly journals Inhibition of angiogenesis and wound healing by adenovirus-mediated gene transfer of a soluble form of vascular endothelial growth factor receptor in mice

2003 ◽  
Vol 41 (6) ◽  
pp. 307-308
Author(s):  
Johannes Jacobi ◽  
Betty Y. Tam ◽  
Uma Sundram ◽  
Calvin J. Kuo ◽  
John P. Cooke
2001 ◽  
Vol 100 (5) ◽  
pp. 567-575 ◽  
Author(s):  
Funmi M. BELGORE ◽  
Andrew D. BLANN ◽  
Gregory Y. LIP

Vascular endothelial growth factor (VEGF) mediates endothelial cell mitogenesis and enhances vascular permeability. VEGF interacts with the endothelium via two membrane-spanning receptors, fms-like tyrosine kinase (Flt)-1 and kinase domain receptor. A soluble form of Flt-1 (sFlt-1) was isolated from endothelial cell media; however, its biological significance is still unknown, with limited data on plasma sFlt-1 levels in disease states. We have developed two new ELISAs for detecting free and VEGF-complexed sFlt-1, which were tested in accordance with standard validation and assessment methodologies employed in commercial settings. The intra-and inter-assay coefficients of variation are < 5% and 10% respectively, and results are highly reproducible. Applying these ELISAs in a clinical setting, we measured levels of VEGF, free and complexed sFlt-1 in citrated plasma from 40 patients with cardiovascular disease and 40 healthy controls. Median (interquartile range) plasma levels of VEGF in patients were significantly greater than controls [403 pg/ml (158–925 pg/ml) versus 113 pg/ml (33–231 pg/ml), P ⩽ 0.05]. Free sFlt-1 was significantly lower in patients compared with controls [8 ng/ml (2–22 ng/ml) versus 21 ng/ml (10–73 ng/ml), P ⩽ 0.05]. There was no significant difference in the levels of complexed sFlt-1 between the two groups. Plasma levels of VEGF-complexed sFlt-1 are minimal, despite the presence of excess free sFlt-1. Thus unbound plasma VEGF detected by ELISA may represent the majority of circulating VEGF, and justifies the measurement of plasma VEGF as an indicator of circulating VEGF levels. Furthermore, these results suggest that circulating sFlt-1 may serve as a selective inhibitor of VEGF activity, and that this regulatory mechanism may be altered by pathological conditions.


Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 964-971 ◽  
Author(s):  
Smita Nair ◽  
David Boczkowski ◽  
Benjamin Moeller ◽  
Mark Dewhirst ◽  
Johannes Vieweg ◽  
...  

Abstract This study tested the hypothesis that combination of antiangiogenic therapy and tumor immunotherapy of cancer is synergistic. To inhibit angiogenesis, mice were immunized with dendritic cells (DCs) transfected with mRNA that encode products that are preferentially expressed during neoangiogenesis: vascular endothelial growth factor receptor-2 (VEGFR-2) and Tie2 expressed in proliferating endothelial cells, and vascular endothelial growth factor (VEGF) expressed in the angiogenic stroma as well as the tumor cells used in this study. Immunization of mice against VEGF or VEGFR-2 stimulated cytotoxic T lymphocyte (CTL) responses and led to partial inhibition of angiogenesis. Antiangiogenic immunity was not associated with morbidity or mortality except for a transient impact on fertility seen in mice immunized against VEGFR-2, but not VEGF. Tumor growth was significantly inhibited in mice immunized against VEGF, VEGFR-2, and Tie2, either before tumor challenge or in the setting of pre-existing disease in murine B16/F10.9 melanoma and MBT-2 bladder tumor models. Coimmunization of mice against VEGFR-2 or Tie2 and total tumor RNA exhibited a synergistic antitumor effect. Synergism was also observed when mice were coimmunized with various combinations of defined tumor-expressed antigens, telomerase reverse transcriptase (TERT) or TRP-2, and VEGF or VEGFR-2. This study shows that coimmunizing mice against angiogenesis-associated and tumor-expressed antigens can deliver 2 compatible and synergistic cancer treatment modalities via a common treatment, namely immunization.


Sign in / Sign up

Export Citation Format

Share Document