scholarly journals PRESSURE-OVERLOAD INDUCED LV HYPERTROPHY AND DYSFUNCTION: CRITICAL ROLES OF CAMKII AND P38 MAP KINASE IN ER STRESS SIGNALING PATHWAY

2016 ◽  
Vol 67 (13) ◽  
pp. 1403 ◽  
Author(s):  
Xing Chen ◽  
Guangming Cheng ◽  
Shiming Liu ◽  
Sheng Ye ◽  
Lin Zhao ◽  
...  
Antioxidants ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 214
Author(s):  
Jiah Yeom ◽  
Seongho Ma ◽  
Young-Hee Lim

Background: Autophagy is a cell protection system invoked to eliminate the damaged organelles and misfolded proteins that induce various stresses, including endoplasmic reticulum (ER) stress. Autophagy can control mucin secretion in goblet cells. Oxyresveratrol (OXY), an antioxidant, stimulates expression of MUC2. Thus, we investigated the effect of OXY on autophagy and found that OXY-induced autophagy stimulates MUC2 expression in human intestinal goblet cells. Methods: Autophagy-related genes and proteins were examined by quantitative real-time PCR (qPCR) and Western blotting, respectively. Autophagy was assessed by immunocytochemistry (ICC). To analyze the protein expression profiles of OXY-treated LS 174T goblet cells, two-dimensional electrophoresis (2DE) and peptide mass fingerprinting (PMF) were performed. MUC2 expression in cells was evaluated by ICC. Results: OXY significantly increased the expression levels of genes related to autophagy induction, and activated phagosome elongation resulted in the formation of autophagosomes. OXY also activated the ER stress signaling pathway and promoted MUC2 synthesis, which was inhibited by treatment with an autophagy inhibitor. Conclusion: OXY induces autophagy via the ER stress signaling pathway, and OXY-induced autophagy increases MUC2 production in intestinal goblet cells.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Hui Zhao ◽  
Yulin Liao ◽  
Tetsuo Minamino ◽  
Yoshihiro Asano ◽  
Masanori Asakura ◽  
...  

Background We previously reported that prolonged endoplasmic reticulum (ER) stress contributes to progression from cardiac hypertrophy to heart failure. Statins have an inhibitory effect on cholesterol synthesis, oxidative stresses, protein synthesis and production of inflammatory cytokines, all of which could be associated with ER stress. However, it is unknown whether statins can ameliorate ER stress in heart disease. This study was designed to investigate whether pravastatin could inhibit cardiac remodeling and ameliorate ER stress caused by pressure overload or tumor necrosis factor α (TNF α ). Methods and Results Cardiac hypertrophy was induced by transverse aortic constriction (TAC) for four weeks in C57BL/6 male mice. Either pravastatin (5 mg/kg/d, n=20, TAC+prava group) or its vehicle (n=20) was orally administered to mice. The ER stress signaling pathway was also studied in pressure-overloaded mice hearts and in cultured cardiomyocytes treated with TNF α (10ng/ml) for 24 hours. Four weeks after TAC, both heart-to-body weight ratio (8.68 ± 1.23 in TAC group, 6.92 ± 1.11 in TAC+prava group) and lung-to-body weight ratio (11.08 ± 2.58 in TAC group, 7.92± 3.56 in TAC+prava group) became significantly lower in pravastatin-treated mice than in the TAC group. Left ventricular fractional shortening and left ventricular ejection fraction (LVFS and LVEF) were larger in TAC+prava group (48.0±1.9 % and 80±1.9% respectively) compared with TAC group (LVFS and LVEF, 34.8 ±1.4% and 65 ±3%; P<0.01 VS TAC group each). Markers of ER stress such as an increase in ER chaperones and CHOP expressions and enhanced phosphorylation of eIF2 α were observed in the hearts of TAC mice, while pravastatin treatment significantly blunted these changes. Pravastatin-treated TAC mice also showed a decrease of cardiac apoptosis. Cardiac expression of TNF α was increased in TAC mice, and TNF α induced ER stress in cultured neonatal rat cardiomyocytes, either of which was significantly inhibited by pravastatin. Conclusions These findings indicate that pravastatin inhibits cardiac remodeling in mice subjected to pressure overload, and this action is associated with inhibition of the ER stress signaling pathway.


2003 ◽  
Vol 10 (4-6) ◽  
pp. 437-443 ◽  
Author(s):  
Takashi Kojima ◽  
Toshinobu Yamamoto ◽  
Masaki Murata ◽  
Mengdong Lan ◽  
Ken-ichi Takano ◽  
...  

2009 ◽  
Vol 30 (4) ◽  
pp. 412-412
Author(s):  
Matthias Blüher ◽  
Nava Bashan ◽  
Iris Shai ◽  
Ilana Harman-Boehm ◽  
Tanya Tarnovscki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document