scholarly journals ARTIFICIAL INTELLIGENCE APPLIED TO ECG IMPROVES HEART FAILURE PREDICTION ACCURACY

2021 ◽  
Vol 77 (18) ◽  
pp. 3045
Author(s):  
Oguz Akbilgic ◽  
Liam Butler ◽  
Ibrahim Karabayir ◽  
Patricia Chang ◽  
Dalane Kitzman ◽  
...  
2020 ◽  
Vol 28 ◽  
Author(s):  
Valeria Visco ◽  
Germano Junior Ferruzzi ◽  
Federico Nicastro ◽  
Nicola Virtuoso ◽  
Albino Carrizzo ◽  
...  

Background: In the real world, medical practice is changing hand in hand with the development of new Artificial Intelligence (AI) systems and problems from different areas have been successfully solved using AI algorithms. Specifically, the use of AI techniques in setting up or building precision medicine is significant in terms of the accuracy of disease discovery and tailored treatment. Moreover, with the use of technology, clinical personnel can deliver a very much efficient healthcare service. Objective: This article reviews AI state-of-the-art in cardiovascular disease management, focusing on diagnostic and therapeutic improvements. Methods: To that end, we conducted a detailed PubMed search on AI application from distinct areas of cardiology: heart failure, arterial hypertension, atrial fibrillation, syncope and cardiovascular rehabilitation. Particularly, to assess the impact of these technologies in clinical decision-making, this research considers technical and medical aspects. Results: On one hand, some devices in heart failure, atrial fibrillation and cardiac rehabilitation represent an inexpensive, not invasive or not very invasive approach to long-term surveillance and management in these areas. On the other hand, the availability of large datasets (big data) is a useful tool to predict the development and outcome of many cardiovascular diseases. In summary, with this new guided therapy, the physician can supply prompt, individualised, and tailored treatment and the patients feel safe as they are continuously monitored, with a significant psychological effect. Conclusion: Soon, tailored patient care via telemonitoring can improve the clinical practice because AI-based systems support cardiologists in daily medical activities, improving disease detection and treatment. However, the physician-patient relationship remains a pivotal step.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Rao ◽  
Y Li ◽  
R Ramakrishnan ◽  
A Hassaine ◽  
D Canoy ◽  
...  

Abstract Background/Introduction Predicting incident heart failure has been challenging. Deep learning models when applied to rich electronic health records (EHR) offer some theoretical advantages. However, empirical evidence for their superior performance is limited and they remain commonly uninterpretable, hampering their wider use in medical practice. Purpose We developed a deep learning framework for more accurate and yet interpretable prediction of incident heart failure. Methods We used longitudinally linked EHR from practices across England, involving 100,071 patients, 13% of whom had been diagnosed with incident heart failure during follow-up. We investigated the predictive performance of a novel transformer deep learning model, “Transformer for Heart Failure” (BEHRT-HF), and validated it using both an external held-out dataset and an internal five-fold cross-validation mechanism using area under receiver operating characteristic (AUROC) and area under the precision recall curve (AUPRC). Predictor groups included all outpatient and inpatient diagnoses within their temporal context, medications, age, and calendar year for each encounter. By treating diagnoses as anchors, we alternatively removed different modalities (ablation study) to understand the importance of individual modalities to the performance of incident heart failure prediction. Using perturbation-based techniques, we investigated the importance of associations between selected predictors and heart failure to improve model interpretability. Results BEHRT-HF achieved high accuracy with AUROC 0.932 and AUPRC 0.695 for external validation, and AUROC 0.933 (95% CI: 0.928, 0.938) and AUPRC 0.700 (95% CI: 0.682, 0.718) for internal validation. Compared to the state-of-the-art recurrent deep learning model, RETAIN-EX, BEHRT-HF outperformed it by 0.079 and 0.030 in terms of AUPRC and AUROC. Ablation study showed that medications were strong predictors, and calendar year was more important than age. Utilising perturbation, we identified and ranked the intensity of associations between diagnoses and heart failure. For instance, the method showed that established risk factors including myocardial infarction, atrial fibrillation and flutter, and hypertension all strongly associated with the heart failure prediction. Additionally, when population was stratified into different age groups, incident occurrence of a given disease had generally a higher contribution to heart failure prediction in younger ages than when diagnosed later in life. Conclusions Our state-of-the-art deep learning framework outperforms the predictive performance of existing models whilst enabling a data-driven way of exploring the relative contribution of a range of risk factors in the context of other temporal information. Funding Acknowledgement Type of funding source: Private grant(s) and/or Sponsorship. Main funding source(s): National Institute for Health Research, Oxford Martin School, Oxford Biomedical Research Centre


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi139-vi139
Author(s):  
Jan Lost ◽  
Tej Verma ◽  
Niklas Tillmanns ◽  
W R Brim ◽  
Harry Subramanian ◽  
...  

Abstract PURPOSE Identifying molecular subtypes in gliomas has prognostic and therapeutic value, traditionally after invasive neurosurgical tumor resection or biopsy. Recent advances using artificial intelligence (AI) show promise in using pre-therapy imaging for predicting molecular subtype. We performed a systematic review of recent literature on AI methods used to predict molecular subtypes of gliomas. METHODS Literature review conforming to PRSIMA guidelines was performed for publications prior to February 2021 using 4 databases: Ovid Embase, Ovid MEDLINE, Cochrane trials (CENTRAL), and Web of Science core-collection. Keywords included: artificial intelligence, machine learning, deep learning, radiomics, magnetic resonance imaging, glioma, and glioblastoma. Non-machine learning and non-human studies were excluded. Screening was performed using Covidence software. Bias analysis was done using TRIPOD guidelines. RESULTS 11,727 abstracts were retrieved. After applying initial screening exclusion criteria, 1,135 full text reviews were performed, with 82 papers remaining for data extraction. 57% used retrospective single center hospital data, 31.6% used TCIA and BRATS, and 11.4% analyzed multicenter hospital data. An average of 146 patients (range 34-462 patients) were included. Algorithms predicting IDH status comprised 51.8% of studies, MGMT 18.1%, and 1p19q 6.0%. Machine learning methods were used in 71.4%, deep learning in 27.4%, and 1.2% directly compared both methods. The most common algorithm for machine learning were support vector machine (43.3%), and for deep learning convolutional neural network (68.4%). Mean prediction accuracy was 76.6%. CONCLUSION Machine learning is the predominant method for image-based prediction of glioma molecular subtypes. Major limitations include limited datasets (60.2% with under 150 patients) and thus limited generalizability of findings. We recommend using larger annotated datasets for AI network training and testing in order to create more robust AI algorithms, which will provide better prediction accuracy to real world clinical datasets and provide tools that can be translated to clinical practice.


Author(s):  
Oguz Akbilgic ◽  
Liam Butler ◽  
Ibrahim Karabayir ◽  
Patricia P Chang ◽  
Dalane W Kitzman ◽  
...  

Abstract Aims Heart failure (HF) is a leading cause of death. Early intervention is the key to reduce HF-related morbidity and mortality. This study assesses the utility of electrocardiograms (ECGs) in HF risk prediction. Methods and results Data from the baseline visits (1987–89) of the Atherosclerosis Risk in Communities (ARIC) study was used. Incident hospitalized HF events were ascertained by ICD codes. Participants with good quality baseline ECGs were included. Participants with prevalent HF were excluded. ECG-artificial intelligence (AI) model to predict HF was created as a deep residual convolutional neural network (CNN) utilizing standard 12-lead ECG. The area under the receiver operating characteristic curve (AUC) was used to evaluate prediction models including (CNN), light gradient boosting machines (LGBM), and Cox proportional hazards regression. A total of 14 613 (45% male, 73% of white, mean age ± standard deviation of 54 ± 5) participants were eligible. A total of 803 (5.5%) participants developed HF within 10 years from baseline. Convolutional neural network utilizing solely ECG achieved an AUC of 0.756 (0.717–0.795) on the hold-out test data. ARIC and Framingham Heart Study (FHS) HF risk calculators yielded AUC of 0.802 (0.750–0.850) and 0.780 (0.740–0.830). The highest AUC of 0.818 (0.778–0.859) was obtained when ECG-AI model output, age, gender, race, body mass index, smoking status, prevalent coronary heart disease, diabetes mellitus, systolic blood pressure, and heart rate were used as predictors of HF within LGBM. The ECG-AI model output was the most important predictor of HF. Conclusions ECG-AI model based solely on information extracted from ECG independently predicts HF with accuracy comparable to existing FHS and ARIC risk calculators.


2020 ◽  
Vol 26 (10) ◽  
pp. S76
Author(s):  
Frederik Hendrik Verbrugge ◽  
Yogesh N.V. Reddy ◽  
Zachi I. Attia ◽  
Paul A. Friedman ◽  
Peter A. Noseworthy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document