scholarly journals Dynamic 3-dimensional echocardiographic reconstruction of the left ventricle using color doppler myocardial tissue imaging technique. In vivo experimental and clinical study

1996 ◽  
Vol 27 (2) ◽  
pp. 21 ◽  
Author(s):  
José Azevedo ◽  
Miguel Garcia-Fernandez ◽  
Pablo Puerta ◽  
Mar Moreno ◽  
Daniel SanRoman ◽  
...  
Blood ◽  
2011 ◽  
Vol 118 (20) ◽  
pp. 5371-5379 ◽  
Author(s):  
Camille Laurent ◽  
Sabina Müller ◽  
Catherine Do ◽  
Talal Al-Saati ◽  
Sophie Allart ◽  
...  

Abstract CD8+ CTLs are thought to play a role in the control of follicular lymphoma (FL). Yet, the link between CTL tissue distribution, activation status, ability to kill FL cells in vivo, and disease progression is still elusive. Pretreatment lymph nodes from FL patients were analyzed by IHC (n = 80) or by 3-color confocal microscopy (n = 10). IHC revealed a rich infiltrate of CD8+ granzyme B+ (GrzB) cells in FL interfollicular spaces. Accordingly, confocal microscopy showed an increased number of CD3+CD8+GrzB+ CTLs and a brighter GrzB staining in individual CTL in FL samples compared with reactive lymph nodes. CTLs did not penetrate tumor nodules. In 3-dimensional (3-D) image reconstructions, CTLs were detected at the FL follicle border where they formed lytic synapse-like structures with FL B cells and with apoptotic cells, suggesting an in situ cytotoxic function. Finally, although GrzB expression in CTLs did not correlate with risk factors, high GrzB content correlated with prolonged progression free-survival (PFS) after rituximab-combined chemotherapy. Our results show the recruitment of armed CTLs with a tumor-controlling potential into FL lymph nodes and suggest that CTL-associated GrzB expression could influence PFS in FL patients having received rituximab-combined chemotherapy.


2003 ◽  
Vol 26 (3) ◽  
pp. 235-240 ◽  
Author(s):  
K. Mueller-Stahl ◽  
T. Kofidis ◽  
P. Akhyari ◽  
B. Wachsmann ◽  
A. Lenz ◽  
...  

Background We demonstrate a method that includes colocalization studies to analyze cell suspensions after isolation and to characterize 3-dimensional grafts consisting of cells and matrix in vitro and in vivo. Materials and methods Neonatal rat cardiomyocytes were labelled by CFDA-SE after harvest. Cells in the isolated cell suspension, the embodied cells in the seeded scaffolds were characterized measuring features such as viability and distribution of the cell types. Results Selective cell count revealed high yields of viable cardiomyocytes. After seeding cells in collagen matrix, viability of the cells decreased gradually in the time process in vitro. Histology of implanted bioartificial myocardial tissue detected viable cardiomyocytes within the graft. Conclusion Using colocalization histology we could label and track cells within the bioartificial myocardial tissue graft in vitro and post implant and assess viability and distribution.


Author(s):  
Sahar Hendabadi ◽  
Javier Bermejo ◽  
Yolanda Benito ◽  
Raquel Yotti ◽  
Francisco Fernández-Avilés ◽  
...  

Because the left ventricle (LV) is not completely emptied during systole, oxygenated blood from the left atrium interacts with residual blood from preceding cycles. It is hypothesized that LV flow is optimal for transporting blood under normal conditions; yet proving this remains a challenge. Furthermore, clinical evaluation of LV hemodynamics has tremendous diagnostic importance for patients with cardiomyopathy. We have performed Doppler-echocardiography on 6 patients with dilated cardiomyopathy and 6 healthy volunteers. Using novel processing of the color-Doppler data, bi-directional velocity field maps in the apical long axis plane were derived. Resulting flow data was used to perform Lagrangian coherent structure (LCS) computation, which enabled novel characterization of the transport topology in the LV during filling and ejection. This framework was used to quantify stasis in the LV, which can be used as a surrogate for diagnosing pumping deficiencies and thrombosis risk. This framework also enables characterization of LV vortices, which have previously received much attention using Eulerian characterizations. The framework presented here uncovers the well-defined boundaries to both E-wave and A-wave filling vortices, which has not been previously reported.


Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 42-OR
Author(s):  
VICTORIA SALEM ◽  
LUIS F. DELGADILLO SILVA ◽  
KINGA SUBA ◽  
ALDARA MARTIN ALONSO ◽  
WHEI-CHANG KIM ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yusaku Hontani ◽  
Mikhail Baloban ◽  
Francisco Velazquez Escobar ◽  
Swetta A. Jansen ◽  
Daria M. Shcherbakova ◽  
...  

AbstractNear-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C–S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marisa Nacke ◽  
Emma Sandilands ◽  
Konstantina Nikolatou ◽  
Álvaro Román-Fernández ◽  
Susan Mason ◽  
...  

AbstractThe signalling pathways underpinning cell growth and invasion use overlapping components, yet how mutually exclusive cellular responses occur is unclear. Here, we report development of 3-Dimensional culture analyses to separately quantify growth and invasion. We identify that alternate variants of IQSEC1, an ARF GTPase Exchange Factor, act as switches to promote invasion over growth by controlling phosphoinositide metabolism. All IQSEC1 variants activate ARF5- and ARF6-dependent PIP5-kinase to promote PI(3,4,5)P3-AKT signalling and growth. In contrast, select pro-invasive IQSEC1 variants promote PI(3,4,5)P3 production to form invasion-driving protrusions. Inhibition of IQSEC1 attenuates invasion in vitro and metastasis in vivo. Induction of pro-invasive IQSEC1 variants and elevated IQSEC1 expression occurs in a number of tumour types and is associated with higher-grade metastatic cancer, activation of PI(3,4,5)P3 signalling, and predicts long-term poor outcome across multiple cancers. IQSEC1-regulated phosphoinositide metabolism therefore is a switch to induce invasion over growth in response to the same external signal. Targeting IQSEC1 as the central regulator of this switch may represent a therapeutic vulnerability to stop metastasis.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Kostas Kalokasidis ◽  
Meltem Onder ◽  
Myrto-Georgia Trakatelli ◽  
Bertrand Richert ◽  
Klaus Fritz

In this prospective clinical study, the Q-Switched Nd:YAG 1064 nm/532 nm laser (Light Age, Inc., Somerset, NJ, USA) was used on 131 onychomycosis subjects (94 females, 37 males; ages 18 to 68 years). Mycotic cultures were taken and fungus types were detected. The laser protocol included two sessions with a one-month interval. Treatment duration was approximately 15 minutes per session and patients were observed over a 3-month time period. Laser fluencies of 14 J/cm2were applied at 9 billionths of a second pulse duration and at 5 Hz frequency. Follow-up was performed at 3 months with mycological cultures. Before and after digital photographs were taken. Adverse effects were recorded and all participants completed “self-evaluation questionnaires” rating their level of satisfaction. All subjects were well satisfied with the treatments, there were no noticeable side effects, and no significant differences were found treating men versus women. At the 3-month follow-up 95.42% of the patients were laboratory mycologically cured of fungal infection. This clinical study demonstrates that fungal nail infections can be effectively and safely treated with Q-Switched Nd:YAG 1064 nm/532 nm laser. It can also be combined with systemic oral antifungals providing more limited treatment time.


2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


Sign in / Sign up

Export Citation Format

Share Document