Influence of sodium bentonite and activated charcoal on aflatoxin M1 excretion in milk of goats

2001 ◽  
Vol 41 (3) ◽  
pp. 203-213 ◽  
Author(s):  
S.B.Nageswara Rao ◽  
R.C Chopra
2021 ◽  
Author(s):  
Hanul Thukral ◽  
Pankaj Dhaka ◽  
Jasbir Singh Bedi ◽  
Randhir Singh ◽  
Gurpreet Singh

Abstract Aflatoxins and its metabolites negatively impact the ruminant health and production. The present cross-sectional study was aimed to determine the effect of aflatoxins on rumen fermentation by deducing the correlation between the Aflatoxin M1 (AFM1) excretion in milk and indicators of rumen fermentation in bovines. The indicators of rumen fermentation were taken into account and correlated with AFM1 concentration in milk of respective 120 bovines [cattle (n = 82) and buffalo (n = 38)]. The AFM1 in milk samples (n = 120) was quantified by ELISA kit. The correlation analysis revealed that with increase in excretion of AFM1 in milk, the pH (r = 0.38), Methylene Blue Reduction Time (MBRT) (r = 0.43), Sedimentation Activity Time (SAT) (r = 0.31) and ammonia nitrogen content (r = 0.34) of rumen liquor increases; whereas, the Total Volatile Fatty Acids (TVFA’s) content (r=-0.25), Total Bacterial Count (TBC) (r=-0.43) and Total Protozoal Count (TPC) (r=-0.14) of rumen liquor decreases. The results of the present study suggest that the presence of aflatoxins in rumen could have negative effect on the process of rumen fermentation. Therefore, the prevention of primary entry point(s) of AFB1 through the feed of bovines is important for the animal as well as public health.


2016 ◽  
Vol 9 (1) ◽  
pp. 64-72
Author(s):  
Fauziati Fauziati ◽  
Eldha Sampepana

Palm shell liquid smoke obtained by pyrolysis and redestilasi still produce a pungent smoke flavor and color of yellow to brownish yellow so that the necessary research purification of smoke that can be used as ingredients other than preservatives, such as antiseptic hand wash. The research objective is to reduce the stinging liquid smoke aroma, color is tawny and to identify the characterization of the active components of liquid smoke shell oil refining results in Gas Chromatography Mass Spectrometry (GC-MS). The purification process of liquid smoke with redistilled at a temperature of 2000C and by adding 4.5% zeolite adsorbent made three (3) times the resulting liquid smoke of distillate and residue. Liquid smoke produced from distillate and residue are added activated charcoal as much as 9%, 10.5% and 12%, then stirred with a shaker subsequently allowed to stand for 6 days and 10 days The results of the study showed that liquid smoke purification results of the residue by the addition of activated charcoal as 12% and the time saved for 10 days (A2B2C3) gives flavor and color by 1.94 of 1.84 is odorless, yellowish white color and clarity. While the characteristics of the active components of purification results are predominantly acetic acid and phenol compounds of residues that serve as preservatives, antibacterial and antioxidant compounds while PAH (Polycyclic Aromatic Hydrocarbon), namely tar, benzoperen, gualakol and siringoll (aroma causes) undetectedABSTRAKAsap cair cangkang sawit yang diperoleh melalui proses pirolisis dan redestilasi masih menghasilkan aroma asap menyengat dan warna kuning hingga kuning kecoklatan sehingga diperlukan penelitian pemurnian asap yang dapat digunakan sebagai bahan lain selain pengawet, seperti antiseptik pencuci tangan. Tujuan penelitian adalah  untuk mengurangi aroma asap cair yang menyengat, warna yang masih kuning kecoklatan dan untuk  mengidentifikasi karakterisasi komponen aktif asap cair cangkang sawit hasil pemurnian secara Kromatografi Gas Spektrometri Massa (GC-MS). Proses  pemurnian asap cair dengan  redistilasi pada suhu 2000C dan dengan menambahkan adsorben zeolit 4,5% yang dilakukan sebanyak 3 (tiga) kali  dihasilkan asap cair dari Destilat dan Residu . Asap cair  yang dihasilkan dari destilat dan residu ditambahkan arang aktif sebanyak 9%,10,5% dan 12%  kemudian diaduk dengan shaker selanjutnya didiamkan selama 6 hari dan 10 hari .Hasil penelitian menunjukkan bahwa asap cair hasil pemurnian dari residu dengan penambahan arang aktif sebanyak 12% dan waktu simpan selama 10 hari ( A2B2C3 ) memberikan aroma sebesar 1,94 dan warna sebesar 1,84 adalah tidak berbau ,  warna putih kekuningan dan jernih . Sedangkan  karakteristik  komponen aktif hasil pemurnian yang paling dominan  adalah  senyawa acetic acid dan phenol  dari residu yang berfungsi sebagai bahan pengawet, antibakteri dan antioksidan sedangkan senyawa PAH (Polycyclic Aromatic Hydrocarbon) yaitu tar, benzoperen,  gualakol  dan siringoll ( penyebab aroma ) tidak terdeteksi . Kata kunci : asap cair, cangkang sawit, komponen aktif, pemurnian, redestilasi 


2019 ◽  
Vol 43 (1) ◽  
pp. 50-58
Author(s):  
H. S. Alnaemi

     Fate of AflatoxinM1 in soft white cheese and its by-product (whey) and in yogurt locally made from raw sheep's and goat's milk experimentally inoculated with 0.05 and 0.5 µg/l AflatoxinM1 were investigated using ELISA technique. Results reported that AflatoxinM1 was concentrated in cheese at levels significantly higher than that recorded in the raw milk that used for its processing, with a significant decrease in AflatoxinM1 levels in its by-product (whey) comparable to the raw milk used in manufacturing at both inoculated levels. Yogurt produced from raw sheep's milk at second inoculated level exerted AflatoxinM1concentration significantly lower than that present in the milk. Significant differences in AflatoxinM1distribution in cheese and whey produced from sheep's milk comparable to their counterparts produced from goat's milk were recorded. Finally, results revealed the efficacious role of the various dairy manufacturing processes in AflatoxinM1 distribution and the necessity to issue of local legislations concerning the maximum permissible limits for AflatoxinM1 in milk in order to stay within the universal permissible levels for AflatoxinM1 in dairy products to provide greater protection for consumer health. 


Aflatoxin M1 is one of mycotoxin derivatives, which is secreted in milk of dairy cattle fed on feed contaminated with Aflatoxin-B1 (AFB1). The current study was designed to prepare a vaccine against AFB1and to evaluate its efficacy in reducing or preventing secretion of AFM1 in milk. Aflatoxin-B1 was prepared, purified and transformed into oxime, then it was fixed on bovine serum albumins. The AFB1-BSA conjugate was adjuvanted with Gold Nano particles then Montanide ISA 206. The prepared vaccine was used for immunization of rabbits by S/c routes as 100 µg/dose and dairy cattle by I/M routes as 500 µg/dose. The vaccinated animals were boosted at 3 weeks post primary immunization. Serum samples were collected and examined for the anti-AFB1 using AGPT. A mean titer of 15.2 AGPU/ml was detected at 2 weeks post primary vaccination then significantly increased till reached to 76.8 AGPU/ml at 6 weeks post Booster vaccination. All vaccinated rabbits were challenged with dose of 0.3 mg AFB1 toxin/Kg. The vaccinated rabbit showed 100% protection and no AFB1 toxin residue was detected in their livers. Milk samples were collected from non-vaccinated and AFB1-immunized dairy cattle then examined with ELISA for quantitation of AFM1 residues before and after vaccination. The results showed that the prepared AFB1 vaccine was safe, potent and able to reduce AFM1 release in milk of vaccinated heifers by 70%. So the vaccination of lactating animals with the AFB1vaccine might represent a valid tool for the prevention of AFM1 contamination of milk and dairy products.


Sign in / Sign up

Export Citation Format

Share Document