High-temperature compression and tensile tests of γ′- and γ′ (50%)/γ (50%)-single crystals with 〈001〉-, 〈123〉-, 〈011〉- and 〈111〉- orientations

1997 ◽  
Vol 239-240 ◽  
pp. 164-168 ◽  
Author(s):  
Astrid Nitz ◽  
Eckhard Nembach
1994 ◽  
Vol 364 ◽  
Author(s):  
M. A. Morris ◽  
J. P. Perez ◽  
R. Darolia

AbstractThe dislocation configurations produced by room and high temperature compression of <100> oriented single crystals of binary NiAl and in those containing iron and hafnium additions have been analysed and compared to those obtained by hardness indentation and TEM insitu tensile tests. Kinking occurs during room temperature compression such that <100> dislocations are activated in all cases but the iron-containing alloy also exhibited a large density of <111> screw dislocations. The latter however, appear immobile when they are created by hardness indentations of thin foils, while only pile-ups of <100> segments can propagate. Similarly, although different slip systems are present after high temperature compression, only <100> dislocation segments have been confirmed to be mobile after room temperature hardness indentation of these predeformed thin foils. The improvement in ductility observed at room temperature in the predeformed specimens of the binary and the iron containing alloys has been attributed to the increased production of these mobile <100> dislocations.


Author(s):  
A. Garg ◽  
R. D. Noebe ◽  
R. Darolia

Small additions of Hf to NiAl produce a significant increase in the high-temperature strength of single crystals. Hf has a very limited solubility in NiAl and in the presence of Si, results in a high density of G-phase (Ni16Hf6Si7) cuboidal precipitates and some G-platelets in a NiAl matrix. These precipitates have a F.C.C structure and nucleate on {100}NiAl planes with almost perfect coherency and a cube-on-cube orientation-relationship (O.R.). However, G-phase is metastable and after prolonged aging at high temperature dissolves at the expense of a more stable Heusler (β'-Ni2AlHf) phase. In addition to these two phases, a third phase was shown to be present in a NiAl-0.3at. % Hf alloy, but was not previously identified (Fig. 4 of ref. 2 ). In this work, we report the morphology, crystal-structure, O.R., and stability of this unknown phase, which were determined using conventional and analytical transmission electron microscopy (TEM).Single crystals of NiAl containing 0.5at. % Hf were grown by a Bridgman technique. Chemical analysis indicated that these crystals also contained Si, which was not an intentional alloying addition but was picked up from the shell mold during directional solidification.


2021 ◽  
Vol 13 (10) ◽  
pp. 5494
Author(s):  
Lucie Kucíková ◽  
Michal Šejnoha ◽  
Tomáš Janda ◽  
Jan Sýkora ◽  
Pavel Padevět ◽  
...  

Heating wood to high temperature changes either temporarily or permanently its physical properties. This issue is addressed in the present contribution by examining the effect of high temperature on residual mechanical properties of spruce wood, grounding on the results of full-scale fire tests performed on GLT beams. Given these tests, a computational model was developed to provide through-thickness temperature profiles allowing for the estimation of a charring depth on the one hand and on the other hand assigning a particular temperature to each specimen used subsequently in small-scale tensile tests. The measured Young’s moduli and tensile strengths were accompanied by the results from three-point bending test carried out on two groups of beams exposed to fire of a variable duration and differing in the width of the cross-section, b=100 mm (Group 1) and b=160 mm (Group 2). As expected, increasing the fire duration and reducing the initial beam cross-section reduces the residual bending strength. A negative impact of high temperature on residual strength has also been observed from simple tensile tests, although limited to a very narrow layer adjacent to the charring front not even exceeding a typically adopted value of the zero-strength layer d0=7 mm. On the contrary, the impact on stiffness is relatively mild supporting the thermal recovery property of wood.


2020 ◽  
Author(s):  
E. E. Timofeeva ◽  
E. Yu. Panchenko ◽  
A. S. Eftifeeva ◽  
E. I. Yanushonite ◽  
M. V. Zherdeva ◽  
...  

2006 ◽  
Vol 89 (23) ◽  
pp. 232509 ◽  
Author(s):  
S. M. Rao ◽  
K. J. Wang ◽  
N. Y. Yen ◽  
Y. Y. Chen ◽  
C. B. Tsai ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 57-60
Author(s):  
I.G. Lee ◽  
A.K. Ghosh

In order to analyze high temperature deformation behavior of NiAl alloys, deformation maps were constructed for stoichiometric NiAl materials with grain sizes of 4 and 200 µm. Relevant constitute equations and calculation method will be described in this paper. These maps are particularly useful in identifying the location of testing domains, such as creep and tensile tests, in relation to the stress-temperature-strain rate domains experienced by NiAl.


2011 ◽  
Vol 1295 ◽  
Author(s):  
Satoru Kobayashi ◽  
Takayuki Takasugi

ABSTRACTThe effect of fine M2C particles on the recrystallization temperature and high temperature strength of warm rolled Fe3Al base alloys was investigated. Fe-27Al-1.2C-2Cr-xMo (x: 0.3, 0.9) alloys (in at.%) were arc melted, warm rolled and annealed. TEM observations have revealed that fine M2C particles were present in the alloy containing 0.9% Mo but not in the alloy with 0.3% Mo after warm rolling. The recrystallization temperature increased from 740 °C to 810 °C when the Mo content is increased from 0.3 to 0.9 due to the presence of fine M2C particles. Tensile tests conducted on annealed samples with fine sub-grained matrix have shown that the introduction of fine M2C particles is effective to enhance the proof stress at 600 °C.


Sign in / Sign up

Export Citation Format

Share Document