Reaggregation and binding of cell wall proteins from Candida albicans to structural polysaccharides

1998 ◽  
Vol 149 (5) ◽  
pp. 327-338 ◽  
Author(s):  
C Aguado ◽  
J Ruíz-Herrera ◽  
M Iranzo ◽  
R Sentandreu ◽  
S Mormeneo
2015 ◽  
Vol 62 (4) ◽  
pp. 825-835 ◽  
Author(s):  
Karolina Seweryn ◽  
Justyna Karkowska-Kuleta ◽  
Natalia Wolak ◽  
Oliwia Bochenska ◽  
Sylwia Kedracka-Krok ◽  
...  

PLoS ONE ◽  
2012 ◽  
Vol 7 (11) ◽  
pp. e50518 ◽  
Author(s):  
Jeanette Wagener ◽  
Günther Weindl ◽  
Piet W. J. de Groot ◽  
Albert D. de Boer ◽  
Susanne Kaesler ◽  
...  

2009 ◽  
Vol 53 (9) ◽  
pp. 3963-3971 ◽  
Author(s):  
Akihiro Kitamura ◽  
Saito Higuchi ◽  
Masato Hata ◽  
Katsuhiro Kawakami ◽  
Kumi Yoshida ◽  
...  

ABSTRACT β-1,6-Glucan is a fungus-specific cell wall component that is essential for the retention of many cell wall proteins. We recently reported the discovery of a small molecule inhibitor of β-1,6-glucan biosynthesis in yeasts. In the course of our study of its derivatives, we found a unique feature in their antifungal profile. D21-6076, one of these compounds, exhibited potent in vitro and in vivo antifungal activities against Candida glabrata. Interestingly, although it only weakly reduced the growth of Candida albicans in conventional media, it significantly prolonged the survival of mice infected by the pathogen. Biochemical evaluation of D21-6076 indicated that it inhibited β-1,6-glucan synthesis of C. albicans, leading the cell wall proteins, which play a critical role in its virulence, to be released from the cell. Correspondingly, adhesion of C. albicans cells to mammalian cells and their hyphal elongation were strongly reduced by the drug treatment. The results of the experiment using an in vitro model of vaginal candidiasis showed that D21-6076 strongly inhibited the invasion process of C. albicans without a significant reduction in its growth in the medium. These evidences suggested that D21-6076 probably exhibited in vivo efficacy against C. albicans by inhibiting its invasion process.


2002 ◽  
Vol 184 (7) ◽  
pp. 2058-2061 ◽  
Author(s):  
Mark D. McNemar ◽  
William A. Fonzi

ABSTRACT The opportunistic fungal pathogen, Candida albicans, is reported to have several potential virulence factors. A potentially significant factor is the ability to undergo morphological transition from yeast to hypha. This alteration of form is accompanied by many changes within the cell, including alterations in gene expression and cell wall composition. We have isolated a gene that encodes a highly conserved serine/threonine kinase that appears to be involved in the regulation of proteins associated with the cell wall. We have assigned the designation CBK1 (cell wall biosynthesis kinase 1) to this gene. Mutants lacking CBK1 form large aggregates of round cells under all growth conditions and lack the ability to undergo morphological differentiation. Additionally, these mutants show an altered pattern of expression of several transcripts encoding proteins associated with the cell wall. The results suggest that the kinase encoded by CBK1 plays a general role in the maintenance and alteration of the cell wall of C. albicans in all morphologies.


Microbiology ◽  
1997 ◽  
Vol 143 (2) ◽  
pp. 313-320 ◽  
Author(s):  
P. Eroles ◽  
M. Sentandreu ◽  
M. V. Elorza ◽  
R. Sentandreu

2011 ◽  
Vol 301 (5) ◽  
pp. 384-389 ◽  
Author(s):  
Ekkehard Hiller ◽  
Martin Zavrel ◽  
Nicole Hauser ◽  
Kai Sohn ◽  
Anke Burger-Kentischer ◽  
...  

2009 ◽  
Vol 8 (12) ◽  
pp. 1909-1913 ◽  
Author(s):  
Iuliana V. Ene ◽  
Richard J. Bennett

ABSTRACT Candida albicans Hwp1, Hwp2, and Rbt1 are related cell wall proteins expressed during the programs of sexual differentiation and filamentous growth. In this study, we compare strains lacking either single factors or a combination of these genes, and we demonstrate distinct but overlapping roles in mating and biofilm formation.


2021 ◽  
Author(s):  
Soumya Palliyil ◽  
Mark Mawer ◽  
Sami Alwafi ◽  
Lily Fogg ◽  
Giuseppe Buda De Cesare ◽  
...  

MAb based immunotherapies targeting systemic and deep-seated fungal infections are still in their early stages of development with currently no licensed antifungal mAbs available. The cell wall glycoproteins of Candida albicans are potential targets for therapeutic antibody generation due to their extracellular location and key involvement in fungal pathogenesis. We describe phage display based generation of recombinant human antibodies specifically targeting two key cell wall proteins (CWPs) in C. albicans - Utr2 and Pga31, using peptide antigens representing the surface exposed regions of CWPs at elevated levels during in vivo infection. Reformatted mAbs preferentially recognised C. albicans hyphal forms compared to yeast cells and an increased binding in cells pre-treated with caspofungin. In macrophage interaction assays, mAb pre-treatment resulted in a faster engulfment of C. albicans cells suggesting opsonophagocytosis. Finally, in a series of clinically predictive, mouse models of systemic candidiasis, our lead mAb achieved an improved survival (83%) and several log reduction of fungal burden in the kidneys, similar to levels achieved for the fungicidal drug caspofungin, and superior to any anti-Candida mAb.


Microbiology ◽  
2009 ◽  
Vol 155 (6) ◽  
pp. 2004-2020 ◽  
Author(s):  
Emilia Moreno-Ruiz ◽  
Giuseppe Ortu ◽  
Piet W. J. de Groot ◽  
Fabien Cottier ◽  
Céline Loussert ◽  
...  

The fungal cell wall is essential in maintaining cellular integrity and plays key roles in the interplay between fungal pathogens and their hosts. The PGA59 and PGA62 genes encode two short and related glycosylphosphatidylinositol-anchored cell wall proteins and their expression has been previously shown to be strongly upregulated when the human pathogen Candida albicans grows as biofilms. Using GFP fusion proteins, we have shown that Pga59 and Pga62 are cell-wall-located, N- and O-glycosylated proteins. The characterization of C. albicans pga59Δ/pga59Δ, pga62Δ/pga62Δ and pga59Δ/pga59Δ pga62Δ/pga62Δ mutants suggested a minor role of these two proteins in hyphal morphogenesis and that they are not critical to biofilm formation. Importantly, the sensitivity to different cell-wall-perturbing agents was altered in these mutants. In particular, simultaneous inactivation of PGA59 and PGA62 resulted in high sensitivity to Calcofluor white, Congo red and nikkomicin Z and in resistance to caspofungin. Furthermore, cell wall composition and observation by transmission electron microscopy indicated an altered cell wall structure in the mutant strains. Collectively, these data suggest that the cell wall proteins Pga59 and Pga62 contribute to cell wall stability and structure.


Sign in / Sign up

Export Citation Format

Share Document