Variation of nitrogen incorporation and bonding configuration of carbon nitride films studied by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopic ellipsometry

2002 ◽  
Vol 11 (3-6) ◽  
pp. 1183-1187 ◽  
Author(s):  
S. Kennou ◽  
S. Logothetidis ◽  
L. Sygellou ◽  
A. Laskarakis ◽  
D. Sotiropoulou ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3588
Author(s):  
Jiayi Chen ◽  
Yansong Liu ◽  
Jiayue Zhang ◽  
Yuanlin Ren ◽  
Xiaohui Liu

Lyocell fabrics are widely applied in textiles, however, its high flammability increases the risk of fire. Therefore, to resolve the issue, a novel biomass-based flame retardant with phosphorus and nitrogen elements was designed and synthesized by the reaction of arginine with phosphoric acid and urea. It was then grafted onto the lyocell fabric by a dip-dry-cure technique to prepare durable flame-retardant lyocell fabric (FR-lyocell). X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that the flame retardant was successfully introduced into the lyocell sample. Thermogravimetric (TG) and Raman analyses confirmed that the modified lyocell fabric featured excellent thermal stability and significantly increased char residue. Vertical combustion results indicated that FR-lyocell before and after washing formed a complete and dense char layer. Thermogravimetric Fourier-transform infrared (TG-FTIR) analysis suggested that incombustible substances (such as H2O and CO2) were produced and played a significant fire retarding role in the gas phase. The cone calorimeter test corroborated that the peak of heat release rate (PHRR) and total heat release (THR) declined by 89.4% and 56.4%, respectively. These results indicated that the flame retardancy of the lyocell fabric was observably ameliorated.


1999 ◽  
Vol 604 ◽  
Author(s):  
Keiichi Kuboyama ◽  
Kazumi Matsushige

AbstractSome transition metal oxides are known to exhibit the reversible coloration phenomena. Tungsten oxide is one of such materials and exhibits the photochromism and the electrochromism. It is known that the coloration phenomena in the tungsten oxide hydrate are caused by the redox reaction. We found that the photochromic efficiency became extremely higher by addition of some organic materials to the tungsten oxide hydrate and we have studied the mechanism of such a remarkable photochromic enhancement. In some spectroscopic measurement as FT-IR (Fourier transform infrared spectroscopy) and XPS (X-ray photoelectron spectroscopy), we obtained interesting features as follows. The addition of an organic material leads to reducing the tungsten oxide hydrate to smaller pieces, that is, the surface area of the pieces that can react with the additive increases. Moreover, it was found that specific sites in the additive are oxidized when the sample colors. The fact suggests that the additives having such specific sites can enhance the photochromism of the tungsten oxide hydrate


2019 ◽  
Vol 73 (7) ◽  
pp. 767-773
Author(s):  
Ryan C. Ogliore ◽  
Cosette Dwyer ◽  
Michael J. Krawczynski ◽  
Hélène Couvy ◽  
Max Eisele ◽  
...  

We report an infrared (IR) spectroscopic technique to detect quartz grains with large isotope anomalies. We synthesized isotopically doped quartz and used Fourier transform infrared spectroscopy (FT-IR) in two different instruments: a traditional far-field instrument and a neaSpec nanoFT-IR, to quantify the shift in the peak of the Si–O stretch near 780 cm−1 as a function of isotope composition, and the uncertainty in this shift. From these measurements, we estimated the minimum detectable isotope anomaly using FT-IR. The described technique can be used to nondestructively detect very small (30 nm) presolar grains. In particular, supernova grains, which can have very large isotope anomalies, are detectable by this method.


Sign in / Sign up

Export Citation Format

Share Document