Tailoring the microstructure of molybdenum disilicide matrix composites with Nb additions

2004 ◽  
Vol 24 (2) ◽  
pp. 363-368 ◽  
Author(s):  
Aidang Shan ◽  
Hitoshi Hashimoto ◽  
Yong-Ho Park
1994 ◽  
Vol 350 ◽  
Author(s):  
D. A. Hardwick

AbstractAs the temperature demands increase in advanced aerospace systems, engineering materials that can withstand 1200° to 1600°C exposure in air must be developed. MoSi2 is an intermetallic compound that has many, though not all, of the necessary physical and mechanical properties for use in this temperature regime. At ambient and moderate temperatures MoSi2 is brittle, but once the ductile-to-brittle transition temperature (DBTT) is exceeded, it rapidly loses strength. Recent progress in, and current status of, the research efforts in MoSi2 matrix composites will be reviewed, with an emphasis on the critical issues that currently impede progress to application.


2014 ◽  
Vol 983 ◽  
pp. 116-120
Author(s):  
Houan Zhang ◽  
He Jian Wu ◽  
Jia Lin ◽  
Si Yong Gu ◽  
Lei Yu

Molybdenum disilicide (MoSi2) matrix composites with various contents of carbon nanotubes (CNTs) were fabricated by sintering in vacuum at 1550 °C for 1 h. The oxidation behaviors of CNTs/MoSi2composites at 400 °C and 500 °C for 200 h in air were studied. Results showed that the weight loss of CNTs/MoSi2composites increased with the increase of CNTs content. “Pest” phenomenon happened at 400 °C but not at 500 °C. Phase identification and microstructure of the samples were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that many MoO3whiskers and microcracks only occurred on the surface of CNTs/MoSi2composites when oxidized at 400 °C in air, which leaded to the catastrophic disintegration of CNTs/MoSi2composites.


2014 ◽  
Vol 487 ◽  
pp. 15-19
Author(s):  
He Jian Wu ◽  
Hou An Zhang ◽  
Si Yong Gu ◽  
Jia Lin

Molybdenum disilicide (MoSi2) matrix composites with various contents of carbon nanotubes (CNTs) were fabricated by sintering in vacuum at 1550°C for 1 h. The oxidation behaviors of CNTs/MoSi2composites at 1300°C for 200 h in air were studied. Results showed that MoSi2matrix composites with no more than 8 % CNTs in volume had good oxidation resistance at 1300 °C, although addition of CNTs reduced the high temperature oxidation resistance of MoSi2. An approximate linear relationship was found between the weight gain of CNTs/MoSi2composites and the content of CNTs. The oxidation resistance of CNTs/MoSi2composites at high temperature decreased with the increasing of CNTs contents. Since the gaseous products were formed during the oxidation process and escaped from the oxide film, the protective film became loose which offered channels for the oxygen soaking into the composites. Thus the oxidation resistance of CNTs/MoSi2composites was decreased.


Author(s):  
A. Lawley ◽  
M. R. Pinnel ◽  
A. Pattnaik

As part of a broad program on composite materials, the role of the interface on the micromechanics of deformation of metal-matrix composites is being studied. The approach is to correlate elastic behavior, micro and macroyielding, flow, and fracture behavior with associated structural detail (dislocation substructure, fracture characteristics) and stress-state. This provides an understanding of the mode of deformation from an atomistic viewpoint; a critical evaluation can then be made of existing models of composite behavior based on continuum mechanics. This paper covers the electron microscopy (transmission, fractography, scanning microscopy) of two distinct forms of composite material: conventional fiber-reinforced (aluminum-stainless steel) and directionally solidified eutectic alloys (aluminum-copper). In the former, the interface is in the form of a compound and/or solid solution whereas in directionally solidified alloys, the interface consists of a precise crystallographic boundary between the two constituents of the eutectic.


Author(s):  
M. G. Burke ◽  
M. N. Gungor ◽  
P. K. Liaw

Aluminum-based metal matrix composites offer unique combinations of high specific strength and high stiffness. The improvement in strength and stiffness is related to the particulate reinforcement and the particular matrix alloy chosen. In this way, the metal matrix composite can be tailored for specific materials applications. The microstructural characterization of metal matrix composites is thus important in the development of these materials. In this study, the structure of a p/m 2014-SiC particulate metal matrix composite has been examined after extrusion and tensile deformation.Thin-foil specimens of the 2014-20 vol.% SiCp metal matrix composite were prepared by dimpling to approximately 35 μm prior to ion-milling using a Gatan Dual Ion Mill equipped with a cold stage. These samples were then examined in a Philips 400T TEM/STEM operated at 120 kV. Two material conditions were evaluated: after extrusion (80:1); and after tensile deformation at 250°C.


Author(s):  
M. R. Pinnel ◽  
A. Lawley

Numerous phenomenological descriptions of the mechanical behavior of composite materials have been developed. There is now an urgent need to study and interpret deformation behavior, load transfer, and strain distribution, in terms of micromechanisms at the atomic level. One approach is to characterize dislocation substructure resulting from specific test conditions by the various techniques of transmission electron microscopy. The present paper describes a technique for the preparation of electron transparent composites of aluminum-stainless steel, such that examination of the matrix-fiber (wire), or interfacial region is possible. Dislocation substructures are currently under examination following tensile, compressive, and creep loading. The technique complements and extends the one other study in this area by Hancock.The composite examined was hot-pressed (argon atmosphere) 99.99% aluminum reinforced with 15% volume fraction stainless steel wire (0.006″ dia.).Foils were prepared so that the stainless steel wires run longitudinally in the plane of the specimen i.e. the electron beam is perpendicular to the axes of the wires. The initial step involves cutting slices ∼0.040″ in thickness on a diamond slitting wheel.


Author(s):  
Warren J. Moberly ◽  
Daniel B. Miracle ◽  
S. Krishnamurthy

Titanium-aluminum alloy metal matrix composites (MMC) and Ti-Al intermetallic matrix composites (IMC), reinforced with continuous SCS6 SiC fibers are leading candidates for high temperature aerospace applications such as the National Aerospace Plane (NASP). The nature of deformation at fiber / matrix interfaces is characterized in this ongoing research. One major concern is the mismatch in coefficient of thermal expansion (CTE) between the Ti-based matrix and the SiC fiber. This can lead to thermal stresses upon cooling down from the temperature incurred during hot isostatic pressing (HIP), which are sufficient to cause yielding in the matrix, and/or lead to fatigue from the thermal cycling that will be incurred during application, A second concern is the load transfer, from fiber to matrix, that is required if/when fiber fracture occurs. In both cases the stresses in the matrix are most severe at the interlace.


Author(s):  
Tapan Roy

Ceramic fibers are being used to improve the mechanical properties of metal matrix and ceramic matrix composites. This paper reports a study of the structural and other microstructural characteristics of silicon nitride whiskers using both conventional TEM and high resolution electron microscopy.The whiskers were grown by T. E. Scott of Michigan Technological University, by passing nitrogen over molten silicon in the presence of a catalyst. The whiskers were ultrasonically dispersed in chloroform and picked up on holey carbon grids. The diameter of some whiskers (<70nm) was small enough to allow direct observation without thinning. Conventional TEM was performed on a Philips EM400T while high resolution imaging was done on a JEOL 200CX microscope with a point to point resolution of 0.23nm.


Sign in / Sign up

Export Citation Format

Share Document