Fracture toughness of Ti46.5Al2.1Cr3.0Nb0.2W from finite element analysis of miniaturized disk-bend test results

1998 ◽  
Vol 6 (6) ◽  
pp. 471-477 ◽  
Author(s):  
S.J. Eck ◽  
A.J. Ardell
2011 ◽  
Vol 243-249 ◽  
pp. 1461-1465
Author(s):  
Chuan Min Zhang ◽  
Chao He Chen ◽  
Ye Fan Chen

The paper makes an analysis of the reinforced concrete beams with exterior FRP Shell in Finite Element, and compares it with the test results. The results show that, by means of this model, mechanical properties of reinforced concrete beams with exterior FRP shell can be predicted better. However, the larger the load, the larger deviation between calculated values and test values. Hence, if more accurate calculation is required, issues of contact interface between the reinforced concrete beams and the FRP shell should be taken into consideration.


2000 ◽  
Vol 123 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Y. Shindo ◽  
K. Horiguchi ◽  
R. Wang ◽  
H. Kudo

An experimental and analytical investigation in cryogenic Mode I interlaminar fracture behavior and toughness of SL-E woven glass-epoxy laminates was conducted. Double cantilever beam (DCB) tests were performed at room temperature (R.T.), liquid nitrogen temperature (77 K), and liquid helium temperature (4 K) to evaluate the effect of temperature and geometrical variations on the interlaminar fracture toughness. The fracture surfaces were examined by scanning electron microscopy to verify the fracture mechanisms. A finite element model was used to perform the delamination crack analysis. Critical load levels and the geometric and material properties of the test specimens were input data for the analysis which evaluated the Mode I energy release rate at the onset of delamination crack propagation. The results of the finite element analysis are utilized to supplement the experimental data.


2020 ◽  
Vol 12 (5) ◽  
pp. 168781402091868
Author(s):  
Shuang Jing ◽  
Anle Mu ◽  
Yi Zhou ◽  
Ling Xie

The seal is the key part of the cone bit. To reduce the failure probability, a new seal was designed and studied. The sealing performance and structure optimization of the X-O composite seal was analyzed and compared by finite-element analysis. The stress and contact pressure were analyzed to establish the main structural parameters that affect sealing performance and the direction of the structural optimization. By optimizing these structural parameters, including the height, and the radial and axial arc radii, an optimized structure is obtained. The results show that (1) the X-O composite seal can meet the seal requirement, the excessive height of the X seal ring is the root cause of the uneven distribution of stress, pressure, and distortion. (2) A new seal structure is obtained, the distribution of pressure and stress is reasonable and even, and the values of stress and pressure are reduced to avoid distortion and reduce the wear. Finally, the field test results of the X-O composite seal of cone bit showed that the service life of the bit bearing increased by 16% on average and the drilling efficiency increased by 11% on average compared with the original cone bit with the O seal ring.


2020 ◽  
Vol 39 (15-16) ◽  
pp. 587-598 ◽  
Author(s):  
Vahid Daghigh ◽  
Thomas E Lacy ◽  
Hamid Daghigh ◽  
Grace Gu ◽  
Kourosh T Baghaei ◽  
...  

Tailorability is an important advantage of composites. Incorporating new bio-reinforcements into composites can contribute to using agricultural wastes and creating tougher and more reliable materials. Nevertheless, the huge number of possible natural material combinations works against finding optimal composite designs. Here, machine learning was employed to effectively predict fracture toughness properties of multiscale bio-nano-composites. Charpy impact tests were conducted on composites with various combinations of two new bio fillers, pistachio shell powders, and fractal date seed particles, as well as nano-clays and short latania fibers, all which reinforce a poly(propylene)/ethylene–propylene–diene-monomer matrix. The measured energy absorptions obtained were used to calculate strain energy release rates as a fracture toughness parameter using linear elastic fracture mechanics and finite element analysis approaches. Despite the limited number of training data obtained from these impact tests and finite element analysis, the machine learning results were accurate for prediction and optimal design. This study applied the decision tree regressor and adaptive boosting regressor machine learning methods in contrast to the K-nearest neighbor regressor machine learning approach used in our previous study for heat deflection temperature predictions. Scanning electron microscopy, optical microscopy, and transmission electron microscopy were used to study the nano-clay dispersion and impact fracture morphology.


Author(s):  
Liangyao Yu ◽  
Liangxu Ma ◽  
Jian Song

This paper presents a new approach to the design, testing and analysis of a magnetorheological brake which uses a multi-path magnetic circuit to satisfy the braking demand of vehicles. In contrast with a general braking system, an automotive brake exhibits an outstanding performance for high torques and long reaction times. We use a proposed power-law model and finite element analysis to obtain the magnetorheological braking performance for a high shear rate and a high-intensity magnetic field. Finite element analysis with different structures is adopted to determine the parameters of the magnetorheological braking and the layout of the magnetic circuits. An integrated prototype is also fabricated and tested. The test results show that the brake torque is relatively high, and the torque can be accurately controlled by the input current. The reaction time is less than 100 ms. We also analyse the experimental results and use these as the basis for fabricating a full-sized prototype. The full-sized prototype generally exhibits a high torque capacity and a fast dynamic response, thereby validating the feasible application of magnetorheological fluids in automotive braking.


2013 ◽  
Vol 275-277 ◽  
pp. 1359-1363 ◽  
Author(s):  
Jeong Soo Kim ◽  
Moon Kyum Kim

Owing to strong nonlinearity of shotcrete and difficulty of determining the equivalent material properties of steel-shotcrete composites for numerical analysis, methods are required to estimate nonlinear behavior of steel-shotcrete composite in the computational aspect efficiently. In this study, the behavior of steel-shotcrete composites, main primary supports in the NATM tunnel, are estimated by finite element method using the fiber beam-column element. The numerical results are compared with results of uniaxial and flexural test. Results of comparison show that finite element analysis of using fiber beam-column element can be an efficient tool of estimating the steel-shotcrete composite as the primary support in the NATM tunnel.


2012 ◽  
Vol 24 (1) ◽  
pp. 49-60 ◽  
Author(s):  
Bintang Yang ◽  
Tianxiang Chen ◽  
Guang Meng ◽  
Zhiqiang Feng ◽  
Jie Jiang ◽  
...  

In this research, a novel safety escape device based on magnetorheological fluid and permanent magnet is designed, manufactured, and tested. The safety escape device with magnetorheological fluid and permanent magnet can provide an increasing braking torque for a falling object by increasing the magnetic field intensity at the magnetorheological fluid. Such increase is realized by mechanically altering the magnetic circuit of the device when the object is falling. As a result, the falling object accelerates first and then decelerates to stop in the end. Finite element analysis is used to determine some of the specifications of the safety escape device for larger braking torque and smaller size. Finite element analysis results are also used for theoretical study and establishment of the dynamic model of the safety escape device. A prototype is realized and tested finally. The experimental test results show that the operation of the prototype conforms to the prediction by the dynamic model and validates the feasible application of magnetorheological fluids in developing falling devices.


Sign in / Sign up

Export Citation Format

Share Document