Effects of turbulence models on numerical simulations of wave breaking and run-up on a mild slope beach

2010 ◽  
Vol 22 (S1) ◽  
pp. 166-171 ◽  
Author(s):  
Hong Xiao ◽  
Wen-rui Huang
2021 ◽  
Vol 9 (3) ◽  
pp. 264
Author(s):  
Shanti Bhushan ◽  
Oumnia El Fajri ◽  
Graham Hubbard ◽  
Bradley Chambers ◽  
Christopher Kees

This study evaluates the capability of Navier–Stokes solvers in predicting forward and backward plunging breaking, including assessment of the effect of grid resolution, turbulence model, and VoF, CLSVoF interface models on predictions. For this purpose, 2D simulations are performed for four test cases: dam break, solitary wave run up on a slope, flow over a submerged bump, and solitary wave over a submerged rectangular obstacle. Plunging wave breaking involves high wave crest, plunger formation, and splash up, followed by second plunger, and chaotic water motions. Coarser grids reasonably predict the wave breaking features, but finer grids are required for accurate prediction of the splash up events. However, instabilities are triggered at the air–water interface (primarily for the air flow) on very fine grids, which induces surface peel-off or kinks and roll-up of the plunger tips. Reynolds averaged Navier–Stokes (RANS) turbulence models result in high eddy-viscosity in the air–water region which decays the fluid momentum and adversely affects the predictions. Both VoF and CLSVoF methods predict the large-scale plunging breaking characteristics well; however, they vary in the prediction of the finer details. The CLSVoF solver predicts the splash-up event and secondary plunger better than the VoF solver; however, the latter predicts the plunger shape better than the former for the solitary wave run-up on a slope case.


Author(s):  
Brecht Devolder ◽  
Peter Troch ◽  
Pieter Rauwoens

The surf zone dynamics are governed by important processes such as turbulence generation , nearshore sediment transport , wave run-up and wave overtopping at a coastal structure. During field observations , it is very challenging to measure and quantify wave breaking turbulence . Complementary to experimental laboratory studies in a more controlled environment , numerical simulations are highly suitable to understand and quantify surf zone processes more accurately. In this study, wave propagation and wave breaking over a fixed barred beach profile is investigated using a two­ phase Navier-Stokes flow solver. We show that accurate predictions of the turbulent two-phase flow field require special attention regarding turbulence modelling. The numerical wave flume is implemented in the open­ source OpenFOAM library. The computed results (surface elevations , velocity profiles and turbulence levels) are compared against experimental measurements in a wave flume (van der A et al., 2017) .


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 884
Author(s):  
Rawaa Shaheed ◽  
Abdolmajid Mohammadian ◽  
Xiaohui Yan

River bends are one of the common elements in most natural rivers, and secondary flow is one of the most important flow features in the bends. The secondary flow is perpendicular to the main flow and has a helical path moving towards the outer bank at the upper part of the river cross-section, and towards the inner bank at the lower part of the river cross-section. The secondary flow causes a redistribution in the main flow. Accordingly, this redistribution and sediment transport by the secondary flow may lead to the formation of a typical pattern of river bend profile. It is important to study and understand the flow pattern in order to predict the profile and the position of the bend in the river. However, there are a lack of comprehensive reviews on the advances in numerical modeling of bend secondary flow in the literature. Therefore, this study comprehensively reviews the fundamentals of secondary flow, the governing equations and boundary conditions for numerical simulations, and previous numerical studies on river bend flows. Most importantly, it reviews various numerical simulation strategies and performance of various turbulence models in simulating the flow in river bends and concludes that the main problem is finding the appropriate model for each case of turbulent flow. The present review summarizes the recent advances in numerical modeling of secondary flow and points out the key challenges, which can provide useful information for future studies.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1663 ◽  
Author(s):  
Lei Jiang ◽  
Mingjun Diao ◽  
Haomiao Sun ◽  
Yu Ren

The objective of this study was to evaluate the effect of the upstream angle on flow over a trapezoidal broad-crested weir based on numerical simulations using the open-source toolbox OpenFOAM. Eight trapezoidal broad-crested weir configurations with different upstream face angles (θ = 10°, 15°, 22.5°, 30°, 45°, 60°, 75°, 90°) were investigated under free-flow conditions. The volume-of-fluid (VOF) method and two turbulence models (the standard k-ε model and the SST k-w model) were employed in the numerical simulations. The numerical results were compared with the experimental results obtained from published papers. The root mean square error (RMSE) and the mean absolute percent error (MAPE) were used to evaluate the accuracy of the numerical results. The statistical results show that RMSE and MAPE values of the standard k-ε model are 0.35–0.67% and 0.50–1.48%, respectively; the RMSE and MAPE values of the SST k-w model are 0.25–0.66% and 0.55–1.41%, respectively. Additionally, the effects of the upstream face angle on the flow features, including the discharge coefficient and the flow separation zone, were also discussed in the present study.


2010 ◽  
Vol 132 (11) ◽  
Author(s):  
Yu Kaiping ◽  
Zhou Jingjun ◽  
Min Jingxin ◽  
Zhang Guang

A ventilated cavity was investigated using three-dimensional numerical simulation and cavitation water tunnel experiments under the condition of low Froude number. A two-fluid multiphase flow model was adopted in numerical predictions. The drag between the different phases and gravitational effect, as well as the compressibility of gas, was considered in the numerical simulations. By comparing the ventilated coefficient computational results of three different turbulence models with the Epshtein formula, the shear-stress-transport turbulence model was finally employed. The phenomenon of double-vortex tube gas-leakage was observed in both numerical simulations and experiments. Based on the validity of the numerical method, the change law of the lift coefficient on the afterbody was given by numerical predictions and accorded well with experimental results. The cause for the appearance of an abrupt increase in lift was difficult to get from experiments for the hard measurement, whereas the numerical simulations provided some supplements to analyze the reasons. The distribution of lift coefficient on the afterbody had important significance to the design of underwater vehicles.


2002 ◽  
Vol 456 ◽  
pp. 295-318 ◽  
Author(s):  
YING LI ◽  
FREDRIC RAICHLEN

The run-up of non-breaking and breaking solitary waves on a uniform plane beach connected to a constant-depth wave tank was investigated experimentally and numerically. If only the general characteristics of the run-up process and the maximum run-up are of interest, for the case of a breaking wave the post-breaking condition can be simplified and represented as a propagating bore. A numerical model using this bore structure to treat the process of wave breaking and subsequent shoreward propagation was developed. The nonlinear shallow water equations (NLSW) were solved using the weighted essentially non-oscillatory (WENO) shock capturing scheme employed in gas dynamics. Wave breaking and post-breaking propagation are handled automatically by this scheme and ad hoc terms are not required. A computational domain mapping technique was used to model the shoreline movement. This numerical scheme was found to provide a relatively simple and reasonably good prediction of various aspects of the run-up process. The energy dissipation associated with wave breaking of solitary wave run-up (excluding the effects of bottom friction) was also estimated using the results from the numerical model.


Author(s):  
Zhen Ren ◽  
Jianhua Wang ◽  
Decheng Wan

The KCS model is employed for the numerical simulations to investigate the wave breaking phenomena of the bow and shoulder wave. RANS approach coupled with high resolution VOF technique is used to resolve the free surface. In order to study the speed effects on the phenomena of ship wave breaking, four different speeds, i.e. Fr = 0.26, 0.30, 0.32, 0.35, are investigated in calm water. Predicted resistance and wave patterns under Fr = 0.26 are validated with the available experiment data, and good agreement is achieved. For the Fr = 0.26 case, the wave pattern is steady, and the alternate variation of vorticity appear near the free surface is associated with the wake field. The breaking wave phenomena can be observed when the Froude number is over 0.32 and the Fr = 0.35 case shows most violent breaking bow wave. For the Fr = 0.35 case, the process of overturning and breaking of bow wave is observed clearly, and at the tail of bow wave, some breaking features of free surface are also captured. The reconnection of the initial plunger with the free surface results in a pair of counter-rotating vortex that is responsible for the second plunger and scar.


2013 ◽  
Vol 58 (2) ◽  
pp. 333-348 ◽  
Author(s):  
Janusz Szmyd ◽  
Marian Branny ◽  
Michal Karch ◽  
Waldemar Wodziak ◽  
Marek Jaszczur ◽  
...  

This paper presents the results of experimental and numerical investigations of air flow through the crossing of a mining longwall and ventilation gallery. The object investigated consists of airways (headings) arranged in a T-shape. Maintained for technological purposes, the cave is exposed particularly to dangerous accumulations of methane. The laboratory model is a certain simplification of a real longwall and ventilation gallery crossing. Simplifications refer to both the object’s geometry and the air flow conditions. The aim of the research is to evaluate the accuracy with which numerical simulations model the real flow. Stereo Particle Image Velocimetry (SPIV) was used to measure all velocity vector components. Three turbulence models were tested: standard k-ε, k-ε realizable and the Reynolds Stress Model (RSM). The experimental results have been compared against the results of numerical simulations. Good agreement is achieved between all three turbulence model predictions and measurements in the inflow and outflow of the channel. Large differences between the measured and calculated velocity field occur in the cavity zone. Two models, the standard k-ε and k-ε realizable over-predict the measure value of the streamwise components of velocity. This causes the ventilation intensity to be overestimated in this domain. The RSM model underestimates the measure value of streamwise components of velocity and therefore artificially decreases the intensity of ventilation in this zone. The RSM model provides better predictions than the standard k-ε and k-ε realizable in the cavity zone.


Sign in / Sign up

Export Citation Format

Share Document