Effect of extrusion ratio on microstructure and mechanical properties of AZ91D magnesium alloy recycled from scraps by hot extrusion

2010 ◽  
Vol 20 (6) ◽  
pp. 987-991 ◽  
Author(s):  
Mao-liang HU ◽  
Ze-sheng JI ◽  
Xiao-yu CHEN
2006 ◽  
Vol 324-325 ◽  
pp. 499-502
Author(s):  
Ze Sheng Ji ◽  
Mao Liang Hu ◽  
Xiao Yu Chen

AZ91D magnesium alloy is prepared by hot extrusion of recycled machined chips and its fractures and mechanical properties are investigated at various extrusion conditions. Cold-press is employed to prepare extrusion billets of AZ91D magnesium alloy chips, and then the billets are hot extruded at 573K-723K with an extrusion ratio of 11:1. The results show that tensile strength and elongation of the extrusion magnesium alloy with the extrusion temperature of 673K and the extrusion rate of 0.08mm/s can reach 380MPa and 6%, respectively. Fracture surface presents a mix mechanism of dimple-like fracture and gliding fracture. Due to grain refinement by cold-press and hot extrusion, mechanical properties of extruded rods are much higher than those of as-cast AZ91D magnesium alloy. Also, much lower energy consumption is necessary for this recycling compared to the conventional casting process. Solid state recycling is an efficient method for magnesium alloy chips recycling.


2011 ◽  
Vol 704-705 ◽  
pp. 892-896
Author(s):  
Bao Hong Zhang ◽  
Zhi Min Zhang

In order to study the effect of plastic deformation on microstructure and mechanical properties of as-cast AZ91 magnesium alloy, experiments of hot direct extrusion were performed at different extrusion temperatures and different extrusion ratios. The microstructure and mechanical properties of extruded billets and extrudate were measured. Experimental results show that the grain size of as-cast AZ91 magnesium alloy can be dramatically refined by extrusion. Hot extrusion can obviously improve the mechanical properties of as-cast AZ91 magnesium Alloy, comparing with the pre-extruded billet, the tensile strength, yield strength and elongation of extrudate can be improved by at least 69%, 117% and 150% respectively. As the extrusion temperature increases, the tensile strength and yield strength of extrudate will increase. As the extrusion ratio increases, the tensile strength and yield strength of extrudate will increase at first and then fall. At the time of extrusion temperature of 420°C and extrusion ratio of 45, the highest tensile strength of 381Mpa and yield strength of 303MPa can be achieved for the extrudate.


2012 ◽  
Vol 445 ◽  
pp. 237-240
Author(s):  
Bao Hong Zhang ◽  
Zhi Min Zhang

In order to study the effect of deformation extent on microstructure and mechanical properties of as-cast AZ91D magnesium alloy, experiments of direct extrusion were performed at temperature of 420 and different extrusion ratios. The microstructure and mechanical properties of billets and extrudates were measured. Experimental results show that the grain size of as-cast AZ91D magnesium alloy can be dramatically refined by extrusion. Direct extrusion can obviously improve the mechanical properties of as-cast AZ91D magnesium Alloy, comparing with the pre-extruded billet, the tensile strength, yield strength and elongation of extrudate can be improved by at least 83%, 154% and 150% respectively. As the extrusion ratio increases, the tensile strength and yield strength of extrudate will increase at first and then fall.


2009 ◽  
Vol 610-613 ◽  
pp. 796-800 ◽  
Author(s):  
Jian Peng ◽  
Cheng Meng Song ◽  
Ya Zhong Zhao ◽  
Fu Sheng Pan

The mechanical properties and microstructure of the as-extruded ZM21 magnesium alloy and its modified alloy ZME210 with addition of 0.35wt% cerium were investigated with different extrusion ratios from 14 to 182 by using mechanical property test, microscopic structure quantitative analysis, SEM observation and energy spectrum analysis. The results showed that both ZM21 and ZME210 had an extrusion ratio limit for grain refining, and the grains were found to be finer with higher extrusion ratio when the ratio was not higher than the limit value. The extrusion ratio limit for the best effect for grain refining of ZME210 is lower than that of ZM21. It was found that the Ce can refine the grains effectively after hot extrusion with different extrusion ratios. The effects of Ce on the microstructure and mechanical properties were analyzed.


Sign in / Sign up

Export Citation Format

Share Document