Comparison of Microstructure and Mechanical Properties between ZM21 and ZME210 with Different Hot Extrusion Ratios

2009 ◽  
Vol 610-613 ◽  
pp. 796-800 ◽  
Author(s):  
Jian Peng ◽  
Cheng Meng Song ◽  
Ya Zhong Zhao ◽  
Fu Sheng Pan

The mechanical properties and microstructure of the as-extruded ZM21 magnesium alloy and its modified alloy ZME210 with addition of 0.35wt% cerium were investigated with different extrusion ratios from 14 to 182 by using mechanical property test, microscopic structure quantitative analysis, SEM observation and energy spectrum analysis. The results showed that both ZM21 and ZME210 had an extrusion ratio limit for grain refining, and the grains were found to be finer with higher extrusion ratio when the ratio was not higher than the limit value. The extrusion ratio limit for the best effect for grain refining of ZME210 is lower than that of ZM21. It was found that the Ce can refine the grains effectively after hot extrusion with different extrusion ratios. The effects of Ce on the microstructure and mechanical properties were analyzed.

2011 ◽  
Vol 704-705 ◽  
pp. 892-896
Author(s):  
Bao Hong Zhang ◽  
Zhi Min Zhang

In order to study the effect of plastic deformation on microstructure and mechanical properties of as-cast AZ91 magnesium alloy, experiments of hot direct extrusion were performed at different extrusion temperatures and different extrusion ratios. The microstructure and mechanical properties of extruded billets and extrudate were measured. Experimental results show that the grain size of as-cast AZ91 magnesium alloy can be dramatically refined by extrusion. Hot extrusion can obviously improve the mechanical properties of as-cast AZ91 magnesium Alloy, comparing with the pre-extruded billet, the tensile strength, yield strength and elongation of extrudate can be improved by at least 69%, 117% and 150% respectively. As the extrusion temperature increases, the tensile strength and yield strength of extrudate will increase. As the extrusion ratio increases, the tensile strength and yield strength of extrudate will increase at first and then fall. At the time of extrusion temperature of 420°C and extrusion ratio of 45, the highest tensile strength of 381Mpa and yield strength of 303MPa can be achieved for the extrudate.


2014 ◽  
Vol 926-930 ◽  
pp. 89-92
Author(s):  
Quan Li ◽  
Wen Jun Liu ◽  
Ren Ju Cheng ◽  
Shan Jiang ◽  
Su Qin Luo ◽  
...  

The two-stage deformation was processed to ZM21alloy as cast at different parameter condition, and structure evolution and mechanical property was analyzed. The results indicate that the grain of ZM21 alloy as cast will be fined by the two-stage extrusion deformation, and its size can decreases from about 100μm to 15.6μm. The strength of ZM21 alloy can be raised by the two-stage deformation, up to 261.7MPa, At the same time, the prolongation rate is more than 16% by the two-stage deformation.


2010 ◽  
Vol 97-101 ◽  
pp. 565-569
Author(s):  
J.M. Yu ◽  
Zhi Min Zhang ◽  
Bao Hong Zhang ◽  
Qiang Wang

The effects of extrusion ratios (15, 30, 45and 60) on microstructure and mechanical properties of ZK60 magnesium alloy after T5 treatment were investigated. The results show that mechanical properties increase with the increase of extrusion ratios from 15 to 45.However, when the extrusion ratio is increase to 60, each mechanical property is decreased severly.By comparison,in the extrusion ratio of 30, ZK60 magnesium alloy after T5 treatment has excellent comprehensive mechanical properties.Different degrees of dynamic recrystallization appeared in the extrusion process and induced precipitation of second phase.The precipitation of the second phase is beneficial to the grain refinement and meanwhile to the promotion of the strength.


2016 ◽  
Vol 22 (S3) ◽  
pp. 1990-1991
Author(s):  
C.G. Garay-Reyes ◽  
M. A. Ruiz-Esparza-Rodríguez ◽  
E. Cuadros-Lugo ◽  
H. M. Medrano-Prieto ◽  
I. Estrada-Guel ◽  
...  

2017 ◽  
Vol 898 ◽  
pp. 97-103 ◽  
Author(s):  
Zheng Hua Huang ◽  
Nan Zhou ◽  
Jing Xu ◽  
Yang De Li ◽  
Wei Rong Li

The microstructures, phase constitutions and mechanical properties of as-cast samples, extruded rods and plates of Mg-3.52Sn-3.32Al and Mg-6.54Sn-4.78Al alloys were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction and mechanical testing. The results show that as-cast microstructure consists of α-Mg matrix, Mg2Sn and a few dispersed β-Mg17Al12 phases. The two as-cast alloys exhibit good tensile mechanical properties. After hot extrusion, dynamic recrystallization occurs. Average grain size reaches 6 μm ~ 8 μm for rods, and a lot of fine micro-scaled particles exist, resulting in significant enhancement of tensile mechanical properties. The extruded Mg-3.52Sn-3.32Al rod exhibits better comprehensive tensile mechanical property than AZ31B alloy, with tensile strength σb of 295 MPa, yield strength of 200 MPa and elongation of 21.5% at ambient temperature. The extruded Mg-6.54Sn-4.78Al rod exhibits equivalent comprehensive tensile mechanical properties with ZK60 alloy, achieving tensile strength of 355 MPa, yield strength of 275 MPa and elongation of 11% at ambient temperature. The extruded plates at ambient temperature performed a tensile strength of 270 MPa.


Sign in / Sign up

Export Citation Format

Share Document