Effect of Extrusion Ratio on Microstructure and Mechanical Properties of As-Cast AZ91D Magnesium Alloy

2012 ◽  
Vol 445 ◽  
pp. 237-240
Author(s):  
Bao Hong Zhang ◽  
Zhi Min Zhang
2012 ◽  
Vol 445 ◽  
pp. 237-240
Author(s):  
Bao Hong Zhang ◽  
Zhi Min Zhang

In order to study the effect of deformation extent on microstructure and mechanical properties of as-cast AZ91D magnesium alloy, experiments of direct extrusion were performed at temperature of 420 and different extrusion ratios. The microstructure and mechanical properties of billets and extrudates were measured. Experimental results show that the grain size of as-cast AZ91D magnesium alloy can be dramatically refined by extrusion. Direct extrusion can obviously improve the mechanical properties of as-cast AZ91D magnesium Alloy, comparing with the pre-extruded billet, the tensile strength, yield strength and elongation of extrudate can be improved by at least 83%, 154% and 150% respectively. As the extrusion ratio increases, the tensile strength and yield strength of extrudate will increase at first and then fall.


2015 ◽  
Vol 816 ◽  
pp. 337-342
Author(s):  
Shun Cheng Wang ◽  
Zheng Hua Huang ◽  
Wen Jun Qi ◽  
Kai Hong Zheng

An Al-5Zr-1.1B grain refiner was prepared by in-situ synthesis from Al melt and K2ZrF4+KBF4 mixed powder. The microstructure of Al-5Zr-1.1B grain refiner was analyzed by XRD, SEM and EDS. The effect of Al-5Zr-1.1B grain refiner on the microstructure and mechanical properties of AZ91D magnesium alloy were studied. Results show that a large number of fine ZrB2 particles were observed in the Al-5Zr-1.1B grain refiner and the ZrB2 particles could act as the heterogeneous nuclei of α-Mg grains. With the increase of the addition amount of Al-5Zr-1.1B grain refiner, the α-Mg grains of AZ91D magnesium alloy were refined from coarse dendrites to equiaxed grains. When the addition amount of Al-5Zr-1.1B grain refiner increased to 0.6%, the α-Mg grains of AZ91D magnesium alloy were refined to fine equiaxed grains with an average diameter of 45 μm, and the tensile strength and elongation of AZ91D magnesium alloy were improved to 195.3 MPa and 3.94%, respectively. The α-Mg grains average diameter of AZ91D magnesium alloy decreased by 73.5% and the tensile strength and elongation improved by 25.9% and 27.9% compared with that of AZ91D magnesium alloy without adding the Al-5Zr-1.1B grain refiner. It is concluded that the Al-5Zr-1.1B is an effective grain refiner to refine the α-Mg grains of AZ91D magnesium alloy.


2006 ◽  
Vol 324-325 ◽  
pp. 499-502
Author(s):  
Ze Sheng Ji ◽  
Mao Liang Hu ◽  
Xiao Yu Chen

AZ91D magnesium alloy is prepared by hot extrusion of recycled machined chips and its fractures and mechanical properties are investigated at various extrusion conditions. Cold-press is employed to prepare extrusion billets of AZ91D magnesium alloy chips, and then the billets are hot extruded at 573K-723K with an extrusion ratio of 11:1. The results show that tensile strength and elongation of the extrusion magnesium alloy with the extrusion temperature of 673K and the extrusion rate of 0.08mm/s can reach 380MPa and 6%, respectively. Fracture surface presents a mix mechanism of dimple-like fracture and gliding fracture. Due to grain refinement by cold-press and hot extrusion, mechanical properties of extruded rods are much higher than those of as-cast AZ91D magnesium alloy. Also, much lower energy consumption is necessary for this recycling compared to the conventional casting process. Solid state recycling is an efficient method for magnesium alloy chips recycling.


Sign in / Sign up

Export Citation Format

Share Document