scholarly journals Effect of ECAP process on liquid distribution of AZ80M alloy during semi-solid isothermal heat treatment

2021 ◽  
Vol 31 (6) ◽  
pp. 1599-1611
Author(s):  
Ling-ling FAN ◽  
Ming-yang ZHOU ◽  
Yang-yang GUO ◽  
Yu-wen-xi ZHANG ◽  
Gao-feng QUAN
2010 ◽  
Vol 152-153 ◽  
pp. 628-633
Author(s):  
Fa Yun Zhang ◽  
Jian Xiong Ye ◽  
Hong Yan

Effects of SiC particle and holding time on microstructure evolution of SiCP/AZ61 composites during semi-solid isothermal heat treatment method were studied, and evolution mechanism of semi-solid microstructure of composites was discussed. The results indicated that the process of microstructure evolution of SiCP/AZ61 composites by the isothermal holding at the temperatures of 595°C for different times (0min~90min) experienced in succession the rapid merging of the secondary dendritic arms →large massive structure→melting and separating of the local grain boundary →spheroidization of the gains →slowing growth of globular microstructure. Synthetically, after isothermal holding at 595°C for 30min to 60min the favorable semi-solid microstructure can be obtained; Compared with the monolithic AZ61alloy, microstructure of SiCP/AZ61 composites during semi-solid isothermal heat-treatment was finer as a result of entering of Sic particle, and with the increasing of SiC particle volume fraction, globular gain size was smaller.


China Foundry ◽  
2017 ◽  
Vol 14 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Yu Zhang ◽  
Xiao-feng Huang ◽  
Ying Ma ◽  
Ti-jun Chen ◽  
Yuan Hao

2020 ◽  
Vol 1 (2) ◽  
Author(s):  
Lajie WANG ◽  
Jiao XIONG ◽  
Jun LIU ◽  
X J YANG

The semi-solid slurries of the CoCrCuFeNi high entropy alloy (HEA) were fabricated through the recrystallization and partial melting (RAP) process by cold-rolling and partial remelting. The temperature range of the semi-solid region and the relationship between the liquid fraction and the temperature were determined by the differential scanning calorimetry (DSC) curve. The effect of isothermal temperature and holding time on the evolution of the microstructure and mechanical properties of the rolled samples was analyzed. The results show that the microstructure was significantly deformed, and the tensile strength has been increased by 107% after 63% rolling deformation of the CoCrCuFeNi high entropy alloy (HEA). The high-entropy alloy after cold rolling was maintained at 1150 and 1300 ° C for 20, 30, 60, and 120 minutes respectively, the plasticity has been improved compared with the rolled high entropy alloy. The optimal plasticity was reached 13.7% and 7.9% at 1150 ℃ and 1300℃ for 30 minutes, respectively. After semi-solid isothermal heat treatment, the grain morphology changed from dendritic of as-cast or rolled to spherulite and the grain size increased significantly with time and the holding temperature increased.


2018 ◽  
Vol 31 (9) ◽  
pp. 953-962 ◽  
Author(s):  
En-Yang Liu ◽  
Si-Rong Yu ◽  
Ming Yuan ◽  
Fan-Guo Li ◽  
Yan Zhao ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 420 ◽  
Author(s):  
Shuang Nie ◽  
Bingyang Gao ◽  
Xuejian Wang ◽  
Zhiqiang Cao ◽  
Enyu Guo ◽  
...  

A semi-solid microstructure of Mg–10Zn–6.8Gd–4Y alloys is acquired via an isothermal heat treatment process, and the effects of the holding time on the microstructure evolution of Mg–10Zn–6.8Gd–4Y alloys are investigated. The results show that the microstructure of the cast alloy is composed of primary α-Mg dendritic grains with a eutectic structure (W-phase and eutectic Mg) distributed at the grain boundaries. The primary α-Mg dendritic grains grow in size with increasing holding time, and they tend to grow into more globular structures in the initial stage; they then become a bit more dendritic, as small branches grow from the grain boundaries after holding the sample at 580 °C for 10 min. Meanwhile, the interdiffusion of magnesium atoms within the eutectic region, and between the primary α-Mg and eutectic structure, leads to the formation of fine and relatively globular eutectic Mg grains in the eutectic structure after holding for 10 min. The eutectic Mg grains begin to grow, coarsen, coalesce, or be swallowed by the surrounding primary grains, causing fluctuations of the general grain size. Over the whole isothermal heat treatment process, two mechanisms—coalescence and Ostwald ripening—dominate the grain coarsening.


Sign in / Sign up

Export Citation Format

Share Document