Thermal Evolution of Organic Matter and Secondary Hydrocarbon Generation from Upper Paleozoic Coal Deposits in Northern China

2007 ◽  
Vol 17 (4) ◽  
pp. 526-533 ◽  
Author(s):  
Li-quan ZHENG ◽  
Xian-qing LI ◽  
Xia LU ◽  
Ning-ning ZHONG ◽  
Xiao-yan HUANG ◽  
...  
Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pengfei Wang ◽  
Chen Zhang ◽  
Aorao Liu ◽  
Pengfei Zhang ◽  
Yibo Qiu ◽  
...  

Extensive exploration of the marine shale of the Niutitang Formation in south China has been conducted. However, exploration and development results have varied considerably in different areas. For example, the Niutitang shale in Jingyan City (Southwestern Sichuan Basin) produces a large amount of gas with a long period of stable production. In contrast, most development wells in the Niutitang shale in Chongqing City do not produce gas. Scanning electron microscopy images showed that the organic matter (OM) pore development in the Niutitang shale in Jingyan is abundant, large in size, and are well connected. In contrast, OM pores in the Niutitang shale in Chongqing are rarely observed. OM pore development of the Jingyan and Chongqing shales is mainly controlled by thermal maturity as shown by equivalent vitrine reflectance determinations. The moderate thermal maturity has resulted in the development of a large number of OM pores in the Niutitang shale in Jingyan, whereas the high thermal maturity of the Niutitang shale in Chongqing has led to the destruction of most of the OM pores. Due to the existence of ancient uplift, the shale was buried shallowly in the process of hydrocarbon generation evolution, and the shale avoided excessive thermal evolution and retained appropriate thermal maturity. In the Jingyan area, due to its location near the central uplift in the Sichuan Basin, the Niutitang shale deposited nearby avoided excessive evolution, and a large number of OM pores were retained in the reservoir.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 281 ◽  
Author(s):  
Xin Wang ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Ming Wen ◽  
Zixin Xue ◽  
...  

Strong tectonic movement brings great risk to exploration of shale gas in southern China, especially in Lower Cambrian shale with complex tectonic backgrounds, which has good hydrocarbon-generation matter but low or no gas content. In this paper, the Lower Cambrian shale from the southeast Chongqing region, located in the Upper Yangtze Platform, and the Xiuwu Basin, located in the Lower Yangtze Platform, were selected as the research objects. First, the gas components in shale gas samples were measured, then analysis of nitrogen isotopic was used to reveal the nitrogen sources. Using regional geological backgrounds, core description, and seismic interpretation, combined with the perpendicular and parallel permeability test and focused ion beam–helium ion microscopy (FIB–HIM) observation, the reasons for high content of nitrogen in the Lower Cambrian shale from the Xiuwu Basin and the Southeast Chongqing region were clarified. The results indicate that the main sources of nitrogen in the Lower Cambrian shale gas at the Southeast Chongqing region is the thermal evolution of organic matter and atmosphere. Nitrogen in the atmosphere is filled into the shale reservoir through migration channels formed by detachment layers at the bottom of the Lower Cambrian, shale stratification planes, and widespread thrust faults. Nitrogen was also produced during the thermal evolution of organic matter. Both are responsible for the low content of hydrocarbon and high content of nitrogen of shale gas in the Southeast Chongqing region. Further, the main sources of nitrogen in the Lower Cambrian shale gas at the Xiuwu Basin is the upper mantle, superdeep crust, and atmosphere. Nitrogen in the atmosphere is also filled into the shale reservoir through migration channels formed by detachment layers at the bottom of the Lower Cambrian, shale stratification planes, and widespread thrust faults. Nitrogen was also produced by volcanism during the Jurassic. Both are the causes of the low content of hydrocarbon and high content of nitrogen in shale gas in the Xiuwu Basin. Finally, destruction models for shale gas reservoirs with complex tectonic backgrounds were summarized. This research aimed to provide a theoretical guidance for shale gas exploration and development in areas with complex tectonic backgrounds.


2014 ◽  
Vol 1006-1007 ◽  
pp. 107-111
Author(s):  
Yan Wang ◽  
Wen Biao Huang ◽  
Min Wang

Based on the analysis of source rock geochemical index, with K1qn1 Formation of southern Songliao basin as the research objective layer, it’s concluded that the mean TOC value of shale in K1qn1 Formation is higher, generally more than 1%, which belongs to the best source rock. Most of shale organic matter types are type I and type II1. The thermal evolution degree of organic matter is generally in the mature stage: a stage of large hydrocarbon generation. With logging geochemical method applied, the calculated total resources of shale oil in K1qn1 formation are 15.603 billion tons. The II level of resources are 8.765 billion tons, which is more than 50% of the total resources. The I level of resources are 4.808 billion tons while the III level of resources 2.03 billion tons. Overall, the southern Songliao Basin still has a certain degree of prospecting and mining value.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lei Xiao ◽  
Zhuo Li ◽  
Yufei Hou ◽  
Liang Xu ◽  
Liwei Wang ◽  
...  

Organic macerals are the basic components of organic matter and play an important role in determining the hydrocarbon generation capacity of source rock. In this paper, organic geochemical analysis of shale in the Chang 7 member of the Yanchang Formation was carried out to evaluate the availability of source rock. The different organic macerals were effectively identified, and the differences in hydrocarbon generation and pore-forming capacities were discussed from two perspectives: microscopic pore development and macroscopic hydrocarbon generation through field emission scanning electron microscopy (FE-SEM) and energy-dispersive spectrum (EDS) analyses, methane isotherm adsorption, and on-site analysis of gas-bearing properties. The results show that the source rock of the Chang 7 member has a high abundance of organic matter and moderate thermal evolution and that the organic matter type is mainly type I. Based on the morphology of the organic matter and the element and pore development, four types of hydrogen-rich macerals, including sapropelite and exinite, and hydrogen-poor macerals, including vitrinite and inertinite, as well as the submacerals, algae, mineral asphalt matrix, sporophyte, resin, semifusinite, inertodetrinite, provitrinite, euvitrinite, and vitrodetrinite, can be identified through FE-SEM and EDS. A large number of honeycomb-shaped pores develop in sapropelite, and round-elliptical stomata develop in exinite, while vitrinite and inertinite do not develop organic matter pores. The hydrogen-rich maceral is the main component of organic macerals in the Chang 7 member of the Yanchang Formation. The weight percentage of carbon is low, so it has good hydrocarbon generation capacity, and the organic matter pores are developed and contribute 97% of the organic matter porosity, which is conducive to hydrocarbon generation and storage. The amount of hydrogen-poor maceral is low, and the weight percentage of carbon is low, and the organic matter pores are not developed, which is not conducive to hydrocarbon generation and storage.


2013 ◽  
Vol 318 ◽  
pp. 395-398 ◽  
Author(s):  
Sha Sha Gao ◽  
Hong Jie Wang ◽  
Xiang Hao Wang ◽  
Jing Jing Fan ◽  
Xin Zhang

Yanji Depression was formed on the base of Upper Paleozoic strata. Distribution area of Carboniferous-Permian strata is about 1550km 2 , and the strata are preserved intact. By researching on the thermal evolution analysis of hydrocarbon source rock and the source-reservoir-cap combination, the hydrocarbon generation and exploration prospect was studied. The results show that the thickness and the depth of Carboniferous-Permian strata are great, and organic matter maturity is on the stage of high mature-past mature, and it has two stages of hydrocarbon generation process, and the residual hydrocarbon generation potential is low. Upper Paleozoic, Mesozoic and Cenozoic have extensive sandstone reservoir, and have favorable territorial cap rock. It forms two types of source- reservoir- cap assemblage, and has great Hydrocarbon Resource Potential. After analysis the unconventional oil and gas, it shows that Yanji depression has the formation condition of tight sandstone gas and shale gas.


2004 ◽  
Vol 29 ◽  
Author(s):  
Sonali Guha ◽  
K. N. Singh

Rock eval pyrolysis is instrumental in rapid evaluation of maturation and source rock characteristics by providing vital information about the quantity, type and thermal maturity of organic matter. The Ib-Valley coal deposits have been characterized for their source rock potentiality and thus to explore the chances of their involvement in hydrocarbon generation.


Organic-rich shales and mudstones have been drilled during the D.S.D.P. legs 47a off northwestern Africa and legs 47b and 48 off western Europe. Early Miocene black shales of the Tarfaya Basin contain an organic matter of marine origin and deposited in a reducing environment. Cretaceous dark shales and mudstones are widespread in the north Atlantic Ocean, but they contain mainly detrital organic matter of terrestrial origin. Thus, their potential for petroleum generation is rather low. An immature stage of thermal evolution can be assigned to all Miocene and Cretaceous cores. In other parts of the Atlantic Ocean black shales containing abundant organic matter of marine origin have been found in the same series of Lower Cretaceous age. The widespread occurrence of Lower Cretaceous organic rich sediments from very different sources suggests that the conditions of preservation may be the controlling factor for black shale sediments.


2021 ◽  
Vol 18 (2) ◽  
pp. 398-415
Author(s):  
He Bi ◽  
Peng Li ◽  
Yun Jiang ◽  
Jing-Jing Fan ◽  
Xiao-Yue Chen

AbstractThis study considers the Upper Cretaceous Qingshankou Formation, Yaojia Formation, and the first member of the Nenjiang Formation in the Western Slope of the northern Songliao Basin. Dark mudstone with high abundances of organic matter of Gulong and Qijia sags are considered to be significant source rocks in the study area. To evaluate their development characteristics, differences and effectiveness, geochemical parameters are analyzed. One-dimensional basin modeling and hydrocarbon evolution are also applied to discuss the effectiveness of source rocks. Through the biomarker characteristics, the source–source, oil–oil, and oil–source correlations are assessed and the sources of crude oils in different rock units are determined. Based on the results, Gulong and Qijia source rocks have different organic matter primarily detrived from mixed sources and plankton, respectively. Gulong source rock has higher thermal evolution degree than Qijia source rock. The biomarker parameters of the source rocks are compared with 31 crude oil samples. The studied crude oils can be divided into two groups. The oil–source correlations show that group I oils from Qing II–III, Yao I, and Yao II–III members were probably derived from Gulong source rock and that only group II oils from Nen I member were derived from Qijia source rock.


Sign in / Sign up

Export Citation Format

Share Document