scholarly journals Analysis of Gas Composition and Nitrogen Sources of Shale Gas Reservoir under Strong Tectonic Events: Evidence from the Complex Tectonic Area in the Yangtze Plate

Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 281 ◽  
Author(s):  
Xin Wang ◽  
Zhenxue Jiang ◽  
Kun Zhang ◽  
Ming Wen ◽  
Zixin Xue ◽  
...  

Strong tectonic movement brings great risk to exploration of shale gas in southern China, especially in Lower Cambrian shale with complex tectonic backgrounds, which has good hydrocarbon-generation matter but low or no gas content. In this paper, the Lower Cambrian shale from the southeast Chongqing region, located in the Upper Yangtze Platform, and the Xiuwu Basin, located in the Lower Yangtze Platform, were selected as the research objects. First, the gas components in shale gas samples were measured, then analysis of nitrogen isotopic was used to reveal the nitrogen sources. Using regional geological backgrounds, core description, and seismic interpretation, combined with the perpendicular and parallel permeability test and focused ion beam–helium ion microscopy (FIB–HIM) observation, the reasons for high content of nitrogen in the Lower Cambrian shale from the Xiuwu Basin and the Southeast Chongqing region were clarified. The results indicate that the main sources of nitrogen in the Lower Cambrian shale gas at the Southeast Chongqing region is the thermal evolution of organic matter and atmosphere. Nitrogen in the atmosphere is filled into the shale reservoir through migration channels formed by detachment layers at the bottom of the Lower Cambrian, shale stratification planes, and widespread thrust faults. Nitrogen was also produced during the thermal evolution of organic matter. Both are responsible for the low content of hydrocarbon and high content of nitrogen of shale gas in the Southeast Chongqing region. Further, the main sources of nitrogen in the Lower Cambrian shale gas at the Xiuwu Basin is the upper mantle, superdeep crust, and atmosphere. Nitrogen in the atmosphere is also filled into the shale reservoir through migration channels formed by detachment layers at the bottom of the Lower Cambrian, shale stratification planes, and widespread thrust faults. Nitrogen was also produced by volcanism during the Jurassic. Both are the causes of the low content of hydrocarbon and high content of nitrogen in shale gas in the Xiuwu Basin. Finally, destruction models for shale gas reservoirs with complex tectonic backgrounds were summarized. This research aimed to provide a theoretical guidance for shale gas exploration and development in areas with complex tectonic backgrounds.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7603
Author(s):  
Xiaoyan Zou ◽  
Xianqing Li ◽  
Jizhen Zhang ◽  
Huantong Li ◽  
Man Guo ◽  
...  

This study is predominantly about the differences in shale pore structure and the controlling factors of shale gas content between Lower Silurian and Lower Cambrian from the upper Yangtze plate, which are of great significance to the occurrence mechanism of shale gas. The field emission scanning electron microscopy combined with Particles (Pores) and Cracks Analysis System software, CO2/N2 adsorption and the high-pressure mercury injection porosimetry, and methane adsorption were used to investigate characteristics of overall shale pore structure and organic matter pore, heterogeneity and gas content of the Lower Paleozoic in southern Sichuan Basin and northern Guizhou province from the upper Yangtze plate. Results show that porosity and the development of organic matter pores of the Lower Silurian are better than that of the Lower Cambrian, and there are four main types of pore, including interparticle pore, intraparticle pore, organic matter pore and micro-fracture. The micropores of the Lower Cambrian shale provide major pore volume and specific surface areas. In the Lower Silurian shale, there are mesopores besides micropores. Fractal dimensions representing pore structure complexity and heterogeneity gradually increase with the increase in pore volume and specific surface areas. There is a significant positive linear relationship between total organic carbon content and micropores volume and specific surface areas of the Lower Paleozoic shale, and the correlation of the Lower Silurian is more obvious than that of the Lower Cambrian. The plane porosity of organic matter increases with the increase in total organic carbon when it is less than 5%. The plane porosity of organic matter pores is positively correlated with clay minerals content and negatively correlated with brittle minerals content. The adsorption gas content of Lower Silurian and Lower Cambrian shale are 1.51–3.86 m3/t (average, 2.31 m3/t) and 0.35–2.38 m3/t (average, 1.36 m3/t). Total organic carbon, clay minerals and porosity are the main controlling factors for the differences in shale gas content between Lower Cambrian and Lower Silurian from the upper Yangtze plate. Probability entropy and organic matter plane porosity of the Lower Silurian are higher than those of Lower Cambrian shale, but form factor and roundness is smaller.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xianglu Tang ◽  
Wei Wu ◽  
Guanghai Zhong ◽  
Zhenxue Jiang ◽  
Shijie He ◽  
...  

Adsorbed gas is an important component of shale gas. The methane adsorption capacity of shale determines the composition of shale gas. In this study, the methane adsorption capacity of marine, transitional, and lacustrine shales in the Sichuan Basin was analyzed through its isothermal adsorption, mineral composition, water content, etc. The results show that the methane adsorption capacity of marine (Qiongzhusi Formation and Longmaxi Formation), transitional (Longtan Formation), and lacustrine (Xujiahe Formation and Ziliujing Formation) shales is significantly different. The Longtan Formation has the strongest methane adsorption capacity. This is primarily related to its high organic matter and organic matter type III content. The methane adsorption capacity of the lacustrine shale was the weakest. This is primarily related to the low thermal evolution degree and the high content of water-bearing clay minerals. Smectite has the highest methane adsorption capacity of the clay minerals, due to its crystal structure. The water content has a significant effect on methane adsorption largely because water molecules occupy the adsorption site. Additionally, the temperature and pressure in a specific range significantly affect methane adsorption capacity.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Pengfei Wang ◽  
Chen Zhang ◽  
Aorao Liu ◽  
Pengfei Zhang ◽  
Yibo Qiu ◽  
...  

Extensive exploration of the marine shale of the Niutitang Formation in south China has been conducted. However, exploration and development results have varied considerably in different areas. For example, the Niutitang shale in Jingyan City (Southwestern Sichuan Basin) produces a large amount of gas with a long period of stable production. In contrast, most development wells in the Niutitang shale in Chongqing City do not produce gas. Scanning electron microscopy images showed that the organic matter (OM) pore development in the Niutitang shale in Jingyan is abundant, large in size, and are well connected. In contrast, OM pores in the Niutitang shale in Chongqing are rarely observed. OM pore development of the Jingyan and Chongqing shales is mainly controlled by thermal maturity as shown by equivalent vitrine reflectance determinations. The moderate thermal maturity has resulted in the development of a large number of OM pores in the Niutitang shale in Jingyan, whereas the high thermal maturity of the Niutitang shale in Chongqing has led to the destruction of most of the OM pores. Due to the existence of ancient uplift, the shale was buried shallowly in the process of hydrocarbon generation evolution, and the shale avoided excessive thermal evolution and retained appropriate thermal maturity. In the Jingyan area, due to its location near the central uplift in the Sichuan Basin, the Niutitang shale deposited nearby avoided excessive evolution, and a large number of OM pores were retained in the reservoir.


2018 ◽  
Vol 10 (1) ◽  
pp. 582-592 ◽  
Author(s):  
Weiwei Liu ◽  
Kun Zhang ◽  
Zhenxue Jiang ◽  
Shu Jiang ◽  
Yan Song ◽  
...  

Abstract Finding favorable sites for the exploration of shale gas, is still one of the important areas of research that needs immediate attention. The content of organic matter in shale plays a crucial role in the hydrocarbon generation potential, reservoir space and gas-bearing capacity of shales. Therefore, studying the sedimentary environment of organic shale can provide a scientific basis for locating favorable exploration areas for shale gas. The article takes the Lower Cambrian and the Upper Ordovician-Lower Silurian shales in the Yangtze region as the research object and selects representative wells to quantitatively calculate the existence of excess silicon in shale siliceous minerals and the content of excess silicon. Then, the origin of excess silicon can be clarified by the Al, Fe and Mn elemental analysis. Finally, the sedimentary organic matter enrichment mechanism is analyzed from water oxidation-reduction environments and biological productivity. The results of the study show that the excess silicon in the Lower Cambrian and Upper Ordovician-Lower Silurian shales in the Lower Yangtze region is of hydrothermal origin. The hydrothermal activity improves biological fertility on the one hand; whereas on the other hand, it can enhance the reducing capacity of the bottom water conducive for the preservation of organic matter thereby enriching the sedimentary organic matter. The place near the junction of Yangtze plate and Cathaysian plate, where hydrothermal activities were more intense, provided favorable loci for shale gas exploration in the Lower Yangtze region. It was observed that, since the hydrothermal activity was stronger in the Early Cambrian than in the Late Ordovician-Early Silurian times, the total organic carbon (TOC) content of the Lower Cambrian shale was higher than that of the Upper Ordovician-Lower Silurian shales.


2014 ◽  
Vol 1006-1007 ◽  
pp. 107-111
Author(s):  
Yan Wang ◽  
Wen Biao Huang ◽  
Min Wang

Based on the analysis of source rock geochemical index, with K1qn1 Formation of southern Songliao basin as the research objective layer, it’s concluded that the mean TOC value of shale in K1qn1 Formation is higher, generally more than 1%, which belongs to the best source rock. Most of shale organic matter types are type I and type II1. The thermal evolution degree of organic matter is generally in the mature stage: a stage of large hydrocarbon generation. With logging geochemical method applied, the calculated total resources of shale oil in K1qn1 formation are 15.603 billion tons. The II level of resources are 8.765 billion tons, which is more than 50% of the total resources. The I level of resources are 4.808 billion tons while the III level of resources 2.03 billion tons. Overall, the southern Songliao Basin still has a certain degree of prospecting and mining value.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Yizhou Huang ◽  
Kun Zhang ◽  
Zhenxue Jiang ◽  
Yan Song ◽  
Shu Jiang ◽  
...  

There are successes and failures in the exploration of marine shale gas in South China. In some shale gas plays with great basis for hydrocarbon generation, a phenomenon exists that gas loggings reflect low gas bearing in some of the wells and the gas is dominated by nitrogen rather than hydrocarbon gas. The study of nitrogen concentration in shale gas contributes to solve the question that how shale gas diffuses in complex tectonic areas, which helps to figure out the preservation requirements and accumulation mechanisms of shale gas and avoid exploration crisis. This study focused on the lower Cambrian shale in Xiuwu Basin, Lower Yangtze Region, with emphasis on the well Jiangye-1, using gas component analysis, stable nitrogen isotope analysis, overburden permeability tests in parallel and perpendicular directions, and FIB-HIM experiments, also combining with core description, outcrop observation, and seismic interpretation to explore the causes of the high-content nitrogen and low-content hydrocarbon in the lower Cambrian shale gas. The results show that the nitrogen of the lower Cambrian shale in Xiuwu Basin is derived from the atmosphere and the deep crust-upper mantle. The bedding planes and the detachment layer at the bottom of the lower Cambrian compose the lateral pathways, and the widespread deep faults are the vertical pathways for shale gas migration and diffusion. Combining these two, an effective pathway network was built, favorable to gas exchange between the shale gas interval and the atmosphere, partly leading to the concentration of nitrogen and the diffusion of hydrocarbon gas. In the Jurassic, the magmatic activities occurred frequently in the surrounding areas, which not only brought nitrogen from the deep crust-upper mantle but also increased the value of paleo-heat flow even though the basin began to uplift, which promoted the graphitization of organic matter and the collapse of organic pores and accelerated the loss of shale gas. Based on the study above, an explanation model was summarized to expound the causes of high-content nitrogen and low-content hydrocarbon in shale gas plays near the plate-active region in Xiuwu Basin, Lower Yangtze Region.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Lei Xiao ◽  
Zhuo Li ◽  
Yufei Hou ◽  
Liang Xu ◽  
Liwei Wang ◽  
...  

Organic macerals are the basic components of organic matter and play an important role in determining the hydrocarbon generation capacity of source rock. In this paper, organic geochemical analysis of shale in the Chang 7 member of the Yanchang Formation was carried out to evaluate the availability of source rock. The different organic macerals were effectively identified, and the differences in hydrocarbon generation and pore-forming capacities were discussed from two perspectives: microscopic pore development and macroscopic hydrocarbon generation through field emission scanning electron microscopy (FE-SEM) and energy-dispersive spectrum (EDS) analyses, methane isotherm adsorption, and on-site analysis of gas-bearing properties. The results show that the source rock of the Chang 7 member has a high abundance of organic matter and moderate thermal evolution and that the organic matter type is mainly type I. Based on the morphology of the organic matter and the element and pore development, four types of hydrogen-rich macerals, including sapropelite and exinite, and hydrogen-poor macerals, including vitrinite and inertinite, as well as the submacerals, algae, mineral asphalt matrix, sporophyte, resin, semifusinite, inertodetrinite, provitrinite, euvitrinite, and vitrodetrinite, can be identified through FE-SEM and EDS. A large number of honeycomb-shaped pores develop in sapropelite, and round-elliptical stomata develop in exinite, while vitrinite and inertinite do not develop organic matter pores. The hydrogen-rich maceral is the main component of organic macerals in the Chang 7 member of the Yanchang Formation. The weight percentage of carbon is low, so it has good hydrocarbon generation capacity, and the organic matter pores are developed and contribute 97% of the organic matter porosity, which is conducive to hydrocarbon generation and storage. The amount of hydrogen-poor maceral is low, and the weight percentage of carbon is low, and the organic matter pores are not developed, which is not conducive to hydrocarbon generation and storage.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Lingyun Zhao ◽  
Peiming Zhou ◽  
Yi Lou ◽  
Youzhou Zhao ◽  
Wei Liu ◽  
...  

China’s marine-continental transitional facies shale gas resources are abundant with shale gas resources of about 19.8 trillion cubic meters, while the exploration and development of these shale gas resources are still in the initial stage. The Upper Permian Longtan coal series shale is one of the most important transitional shales in the Yangtze platform, China. In this study, the comprehensive methods of mineralogy and organic geochemistry are used to discuss the characteristic of organic matter and sedimentary environment of the Longtan coal series shale in western Guizhou Province, South China. The results show that (1) the total organic carbon (TOC) content of this shale ranges in 0.6%-28.21%, mainly in 3%-12%, indicating a “good-excellent” hydrocarbon source rock, and its vitrinite reflectance ( R o ) ranges from 1.48% to 2.93%, indicating a high-overmature organic matter; (2) the organic matter in this shale is multiorigin, and most of them come from the terrestrial higher plant while the rest come from the plankton; (3) type index (TI) of organic matter is from -65 to 41, indicating most of the kerogens which are II1-III types; and (4) the sedimentary environment of this shale is dominated by suboxic-anoxic fresh water environment, which provides a favorable condition for the preservation of organic matter. In addition, the warm and humid climate during the Late Permian in the Yangtze platform promotes plant growth, and as a result, the Longtan coal series shale is rich in organic matter and has great potential of shale gas exploration and development.


Sign in / Sign up

Export Citation Format

Share Document