Role of the Mf1-1 pheromone precursor gene of the filamentous ascomycete Cryphonectria parasitica

2003 ◽  
Vol 40 (3) ◽  
pp. 242-251 ◽  
Author(s):  
Massimo Turina ◽  
Antonio Prodi ◽  
Neal K.Van Alfen
1999 ◽  
Vol 65 (12) ◽  
pp. 5431-5435 ◽  
Author(s):  
Patricia M. McCabe ◽  
Neal K. Van Alfen

ABSTRACT Cryparin is a cell-surface-associated hydrophobin of the filamentous ascomycete Cryphonectria parasitica. This protein contains a signal peptide that directs it to the vesicle-mediated secretory pathway. We detected a glycosylated form of cryparin in a secretory vesicle fraction, but secreted forms of this protein are not glycosylated. This glycosylation occurred in the proprotein region, which is cleaved during maturation by a Kex2-like serine protease, leaving a mature form of cryparin that could be isolated from both the cell wall and culture medium. Pulse-chase labeling experiments showed that cryparin was secreted through the cell wall, without being bound, into the culture medium. The secreted protein then binds to the cell walls ofC. parasitica, where it remains. Binding of cryparin to the cell wall occurred in submerged culture, presumably because of the lectin-like properties unique to this hydrophobin. Thus, the binding of this hydrophobin to the cell wall is different from that of other hydrophobins which are reported to require a hydrophobic-hydrophilic interface for assembly.


2006 ◽  
Vol 96 (12) ◽  
pp. 1337-1344 ◽  
Author(s):  
S. Prospero ◽  
M. Conedera ◽  
U. Heiniger ◽  
D. Rigling

Sustainable biological control of the chestnut blight fungus Crypho-nectria parasitica with hypovirulence depends on the production and dissemination of hypovirus-infected propagules of the pathogen. We investigated the ability of C. parasitica to sporulate and produce hypo-virus-infected spores on recently dead chestnut wood in coppice stands in southern Switzerland where hypovirulence has been naturally established. The number and type (active, inactive, or none) of cankers was assessed on experimentally cut and stacked stems, firewood stacks, and natural dead wood. Hypovirus-free and hypovirus-infected strains readily survived for more than 1 year in the chestnut blight cankers of the stacked stems. Sporulation of C. parasitica was observed on the surface of preexisting inactive and active cankers, as well as on newly colonized bark areas and was significantly more abundant than on comparable cankers on living stems. On all types of dead wood, we observed more stromata with perithecia than with pycnidia; however, a large proportion of the stromata was not differentiated. All perithecia examined yielded only hypovirus-free ascospores. The incidence of pycnidia that produced hypovirus-infected conidia ranged from 5% on natural dead wood to 41% on the experimental stacks. The mean virus transmission rate into conidia was 69%. Our study demonstrates a considerable saprophytic activity of C. parasitica on recently dead chestnut wood and supports the hypothesis of a role of this saprophytic phase in the epidemiology of hypovirulence.


2003 ◽  
Vol 2 (4) ◽  
pp. 708-717 ◽  
Author(s):  
Jesús Delgado-Jarana ◽  
Miguel Ángel Moreno-Mateos ◽  
Tahía Benítez

ABSTRACT Using a differential display technique, the gene gtt1, which codes for a high-affinity glucose transporter, has been cloned from the mycoparasite fungus Trichoderma harzianum CECT 2413. The deduced protein sequence of the gtt1 gene shows the 12 transmembrane domains typical of sugar transporters, together with certain residues involved in glucose uptake, such as a conserved arginine between domains IV and V and an aromatic residue (Phe) in the sequence of domain X. The gtt1 gene is transcriptionally regulated, being repressed at high levels of glucose. When carbon sources other than glucose are utilized, gtt1 repression is partially alleviated. Full derepression of gtt1 is obtained when the fungus is grown in the presence of low carbon source concentrations. This regulation pattern correlates with the role of this gene in glucose uptake during carbon starvation. Gene expression is also controlled by pH, so that the gtt1 gene is repressed at pH 6 but not at pH 3, a fact which represents a novel aspect of the influence of pH on the gene expression of transporters. pH also affects glucose transport, since a strongly acidic pH provokes a 40% decrease in glucose transport velocity. Biochemical characterization of the transport shows a very low Km value for glucose (12 μM). A transformant strain that overexpresses the gtt1 gene shows a threefold increase in glucose but not galactose or xylose uptake, a finding which confirms the role of the gtt1 gene in glucose transport. The cloning of the first filamentous ascomycete glucose transporter is the first step in elucidating the mechanisms of glucose uptake and carbon repression in aerobic fungi.


1998 ◽  
Vol 18 (2) ◽  
pp. 953-959 ◽  
Author(s):  
Lei Zhang ◽  
Rudeina A. Baasiri ◽  
Neal K. Van Alfen

ABSTRACT Biological control of chestnut blight caused by the filamentous ascomycete Cryphonectria parasitica can be achieved with a virus that infects this fungus. This hypovirus causes a perturbation of fungal development that results in low virulence (hypovirulence), poor asexual sporulation, and female infertility without affecting fungal growth in culture. At the molecular level, the virus is known to affect the transcription of a number of fungal genes. Two of these genes,Vir1 and Vir2, produce abundant transcripts in noninfected strains of the fungus, but the transcripts are not detectable in virus-infected strains. We report here that these two genes encode the pheromone precursors of the Mat-2 mating type of the fungus; consequently, these genes have been renamedMf2/1 and Mf2/2. To determine if the virus affects the mating systems of both mating types of this fungus, the pheromone precursor gene, Mf1/1, of a Mat-1strain was cloned and likewise was found to be repressed in virus-infected strains. The suppression of transcription of the pheromone precursor genes of this fungus could be the cause of the mating defect of infected strains of the fungus. Although published reports suggest that a Gαi subunit may be involved in this regulation, our results do not support this hypothesis. The prepropheromone encoded by Mf1/1 is structurally similar to that of the prepro-p-factor of Schizosaccharomyces pombe. This is the first description of the complete set of pheromone precursor genes encoded by a filamentous ascomycete.


1997 ◽  
Vol 87 (1) ◽  
pp. 50-59 ◽  
Author(s):  
Martin Bissegger ◽  
Daniel Rigling ◽  
Ursula Heiniger

The Cryphonectria parasitica populations in two 6-year-old European chestnut (Castanea sativa) coppices were investigated in southern Switzerland over a period of 4 years. Occurrence of white isolates indicating an infection with Cryphonectria hypovirus, vegetative compatibility groups (VCGs), hypovirulence conversion capacity, and mating types were used to characterize the populations. Sampling of randomly chosen cankers in the first year yielded 59% white isolates in one and 40% in the other population. The distribution of the VCGs and mating types was similar among white and orange isolates, indicating a homogeneous infection of the two populations by the hypovirus. Fourteen VCGs were found in the first population, 16 VCGs in the second. Altogether, 21 VCGs were determined. The same three VCGs dominated in both populations, comprising more than 60% of all isolates. Several VCGs were represented only by white isolates. Five of the six most common VCGs were clustered in two hypovirulence conversion groups, with almost 100% hypovirus transmission within each cluster. Repeated sampling of the same cankers in 1990, 1992, and 1994 did not reveal an increase of white isolates. The portion of blighted stems rose from 37% to about 60% in both plots within 4 years. In this time, chestnut blight killed 15% and competition an additional 21% of the sprouts. Predominantly, sprouts with low diameters at breast height were killed. The growth rate of new cankers was high in their first year and decreased gradually in the following years. A role of hypovirulence in the decline of disease severity was evident since (i) cankers yielding white isolates grew slower and killed considerably fewer sprouts than cankers with orange isolates; and (ii) the majority of the cankers yielded white isolates at least once during the 4-year observation period.


2019 ◽  
Vol 109 (8) ◽  
pp. 1417-1424 ◽  
Author(s):  
Ru Li ◽  
Shan Bai ◽  
Yuanyuan He ◽  
Qi Chen ◽  
Yanping Yao ◽  
...  

The vacuolar H+-ATPases (V-ATPases) are conserved ATP-dependent proton pumps that acidify intracellular compartments in eukaryotic cells. The role of Cpvma1, a V-ATPase catalytic subunit A of Cryphonectria parasitica, was investigated by generating cpvma1-overexpressing and cpvma1-silenced strains. The mutant strains were evaluated for phenotypic characteristics, V-ATPase activity, response to elevated pH and Ca2+ in the medium, virulence on chestnut, and accumulation of hypovirus RNA in the cells. Compared with the wild-type strain, cpvma1-overexpressing strains showed no significant difference in phenotype; however, cpvma1-silenced strains exhibited a phenotype of reduced growth rate, lower level of sporulation, and a marked decrease in V-ATPase activity and virulence. In addition, silencing of cpvma1 increased sensitivity to elevated pH and Ca2+, implicating an important role for Cpvma1 in pH adaptation and Ca2+ homeostasis. Furthermore, silencing of cpvma1 resulted in significantly decreased accumulation of hypoviral RNA. Taken together, our results indicate that Cpvma1 plays an important role in the regulation of phenotypic traits and virulence and the accumulation of hypovirus RNA in C. parasitica.


Plant Disease ◽  
2019 ◽  
Vol 103 (3) ◽  
pp. 430-438 ◽  
Author(s):  
Joana Beatrice Meyer ◽  
Loïc Chalmandrier ◽  
Fabio Fässler ◽  
Christopher Schefer ◽  
Daniel Rigling ◽  
...  

The invasive fungus Cryphonectria parasitica, the causal agent of chestnut blight, is able to survive and sporulate on the bark of fresh dead Castanea sativa wood for at least 2 years. Here, we experimentally investigated the role of fresh dead wood in the epidemiology of chestnut blight, specifically in the spread of the hyperparasitic virus Cryphonectria hypovirus 1, which acts as biocontrol agent of C. parasitica. A total of 152 artificially initiated, virulent bark cankers in four chestnut stands were treated with virus-infected asexual spores originating either from sporulating dead wood or from a spore suspension. Molecular markers for both the virus and the fungal carrier were used to examine the spread of the applied biocontrol virus. Fourteen months after treatment, 42 to 76% of the conidial spray-treated cankers and 50 to 60% of the cankers exposed to a sporulating dead stem had been virus infected by the applied hypovirulent conidia in all four study sites. Virus infection reduced canker expansion and promoted canker healing (callusing). Thus, fresh chestnut dead wood may play an important role in supporting the successful spread of natural hypovirulence in chestnut forests. Further, combined with the application of virus-infected conidial suspensions, it may help promote the establishment of artificially released hypoviruses in chestnut stands to control chestnut blight.


2020 ◽  
Vol 6 (3) ◽  
pp. 157
Author(s):  
Jürgen Wendland

Ashbya gossypii is a filamentous ascomycete belonging to the yeast family of Saccharomycetaceae. At the end of its growth phase Ashbya generates abundant amounts of riboflavin and spores that form within sporangia derived from fragmented cellular compartments of hyphae. The length of spores differs within species of the genus. Needle-shaped Ashbya spores aggregate via terminal filaments. A. gossypii is a homothallic fungus which may possess a and α mating types. However, the solo-MATa type strain is self-fertile and sporulates abundantly apparently without the need of prior mating. The central components required for the regulation of sporulation, encoded by IME1, IME2, IME4, KAR4, are conserved with Saccharomyces cerevisiae. Nutrient depletion generates a strong positive signal for sporulation via the cAMP-PKA pathway and SOK2, which is also essential for sporulation. Strong inhibitors of sporulation besides mutations in the central regulatory genes are the addition of exogenous cAMP or the overexpression of the mating type gene MATα2. Sporulation has been dissected using gene-function analyses and global RNA-seq transcriptomics. This revealed a role of Msn2/4, another potential PKA-target, for spore wall formation and a key dual role of the protein A kinase Tpk2 at the onset of sporulation as well as for breaking the dormancy of spores to initiate germination. Recent work has provided an overview of ascus development, regulation of sporulation and spore maturation. This will be summarized in the current review with a focus on the central regulatory genes. Current research and open questions will also be discussed.


2019 ◽  
Vol 32 (3) ◽  
pp. 286-295 ◽  
Author(s):  
Myeongjin Jo ◽  
Kum-Kang So ◽  
Yo-Han Ko ◽  
Jeesun Chun ◽  
Jung-Mi Kim ◽  
...  

We identified a protein spot showing downregulation in the presence of Cryphonectria hypovirus 1 and tannic acid supplementation as a septin subunit with the highest homology to the Aspergillus nidulans aspA gene, an ortholog of the Saccharomyces cerevisiae Cdc11 gene. To analyze the functional role of this septin component (CpSep1), we constructed its null mutant and obtained a total of eight CpSep1-null mutants from 137 transformants. All CpSep1-null mutants showed retarded growth, with fewer aerial mycelia and intense pigmentation on plates of potato dextrose agar supplemented with L-methionine and biotin. When the marginal hyphae were examined, hyperbranching was observed in contrast to the wild type. The inhibition of colonial growth was partially recovered when the CpSep1-null mutants were cultured in the presence of the osmostabilizing sorbitol. Conidia production of the CpSep1-null mutants was significantly increased by at least 10-fold more. Interestingly, the conidial morphology of the CpSep1-null mutants changed to circular in contrast to the typical rod-shaped spores of the wild type, indicating a role of septin in the spore morphology of Cryphonectria parasitica. However, no differences in the germination process were observed. Virulence assays using excised chestnut bark, stromal pustule formation on chestnut stems, and apple inoculation indicated that the CpSep1 gene is important in pathogenicity.


Sign in / Sign up

Export Citation Format

Share Document